L'approche multi-échelle et la simulation numérique directe des écoulements diphasiques

D. Jamet

CEA/Grenoble, DEN/DER/SSTH

INSTN

Écoulements et transferts de chaleur diphasiques dans les réacteurs nucléaires 26-30 Nov. 2007

Généralités sur l'approche multi-échelle Une démarche générale de la physique

Des caractéristiques à une échelle donnée peuvent être des conséquences de phénomènes se produisant à une échelle inférieure

- ► Couleur des objets
 - ► Interactions complexes entre photons et atomes
- Consommation en carburant des véhicules
 - Frottement pariétal dépendant des fluctuations locales dues à la turbulence
- ► Température maximale des crayons de combustible
 - Taille des gouttes arrachées au front de trempe

Comprendre des phénomènes à une petite échelle pour **expliquer** des phénomènes à une échelle plus grande

Généralités sur l'approche multi-échelle De la caractérisation à la compréhension

Niveaux de description d'un phénomène à une échelle donnée

1. Le caractériser

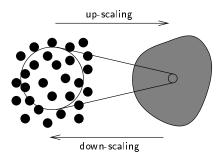
- Plus je roule vite, plus je consomme du carburant
- L'ébullition nucléée a une limite supérieure : le flux critique

2. Le prédire

- conso $\propto \rho C_s V^2/2$
- Corrélations expérimentales donnant le flux critique en sous-canal en fonction des paramètres de fonctionnement macroscopiques : pression, débit, etc.

3. Le comprendre

- C_s est une manifestation du frottement pariétal
 - je sais quoi mesurer et sur quoi jouer pour modifier C_s
- ▶ ???
 - Comment prédire l'occurence du flux critique pour de nouvelles géométries ?
 - Quelle est l'échelle du mécanisme de base ?


Généralités sur l'approche multi-échelle Mythe ou réalité ?

▶ Down-scaling

- Pas toujours nécessaire
- ▶ Une vraie question : où s'arrêter ?
- Pas toujours suffisant, e.g. Navier-Stokes

► Up-scaling

- ▶ De grands succès, e.g. physique statistiaque
- Facile à dire, mais pas si facile à faire

L'approche multi-échelle en mécanique des fluides Quelles échelles ?

1. Petite échelle

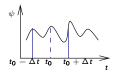
- Hypothèse de mécanique des milieux continus vérifiée
- Toutes les échelles spatio-temporelles sont décrites
- Equations locales instantanées, e.g. Navier-Stokes

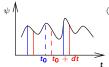
2. Échelle intermédiaire

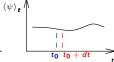
- Les grandes échelles sont décrites et les petites sont modélisées
- ► Approche Simulation des Grandes Echelles ou "LES"

3. Grande échelle

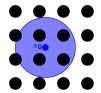
- Seule les caractéristiques moyennes sont décrites
- ▶ Modèles "RANS", e.g. $k \epsilon$

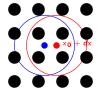



L'approche multi-échelle en mécanique des fluides Quelles moyennes ?

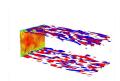

► Moyenne statistique

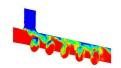
- ▶ Plusieurs réalisations d'un même écoulement
- A une position et un temps, moyenne sur toutes les réalisations
- Quelle est la variable aléatoire ?


► Moyenne temporelle



► Moyenne spatiale

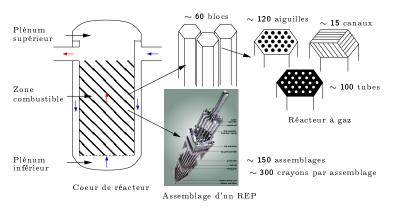




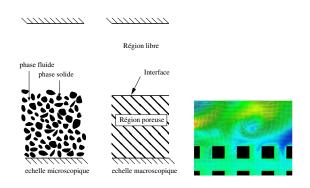
L'approche multi-échelle en mécanique des fluides Comment est-elle utilisée ?

Écoulements monophasiques

- 1. Petite échelle : Simulation Numérique Directe
 - ▶ **Très cher** : $10^7 10^9$ points
 - ▶ Reynolds limités : ≃ 4500
 ▶ Solutions de référence sur des
 - Solutions de référence sur des configurations simples
- 2. Échelle intermédiaire : Simulation des Grandes Échelles
 - ▶ **Cher** : $10^5 10^7$ points
 - ► Informations détaillées
 - ▶ Utilisation industrielle bientôt routinière
- 3. Grande échelle : modèles statistiques
 - ► Coût raisonnable : $10^5 10^7$ points
 - ► Utilisation industrielle

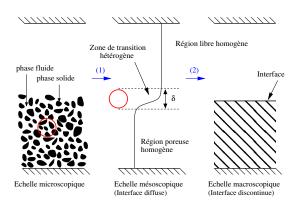


Un exemple d'approche multi-échelle Un exemple presque monophasique

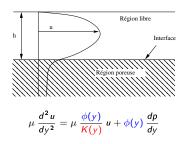

(M. Chandesris, 2006)

Conditions aux limites à l'interface libre-poreux

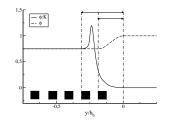
Position du problème



Un exemple d'approche multi-échelle Un exemple presque monophasique

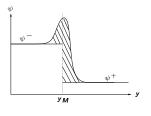

- ► Localisation?
- ► Transferts?
- Physique propre à l'interface?
- ► Modélisation mathématique? (Conditions de saut à l'interface?)

Un exemple d'approche multi-échelle L'approche choisie



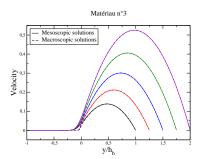
- ► Modélisation par prise de moyenne volumique
- ▶ Interface discontinue équivalente à la zone de transition interfaciale

Un exemple d'approche multi-échelle Un cas académique



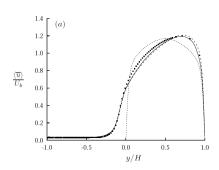
Simulation numérique de l'écoulement à l'échelle microscopique

- ▶ Porosité $\phi(y)$
- Coefficients de frottement : perméabilité K(y)

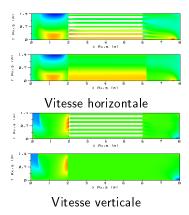

Un exemple d'approche multi-échelle

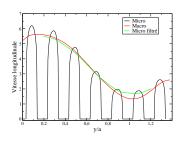
- Grandeur interfaciale = Grandeur non vues à l'échelle macroscopique dont l'interface doit être dotée
- Conservation de la force = condition de saut à l'interface

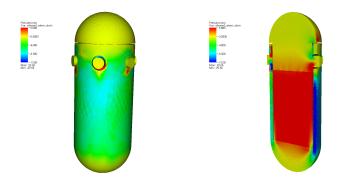
$$\mu \left. \frac{d \left\langle u \right\rangle}{dy} \right|_{\mathbf{y_{M}^{+}}} - \mu \left. \frac{d \left\langle u \right\rangle}{dy} \right|_{\mathbf{y_{M}^{-}}} = \left(\mu \frac{\phi}{K} u\right)^{\mathbf{ex}} + \left(\phi \left. \frac{dp}{dy} \right)^{\mathbf{ex}} \right.$$


La clé du problème

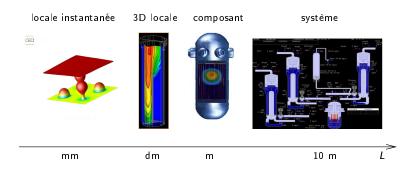
Un exemple d'approche multi-échelle Le cas turbulent


Modèle $k - \epsilon$ de la turbulence




Un exemple d'approche multi-échelle Modèle simplifié de réacteur

Un exemple d'approche multi-échelle Vers le cas réacteur

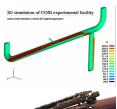


Un exemple d'approche multi-échelle

Quelques enseignements

- L'approche multi-échelle permet de déterminer des lois de fermeture
 - Nécessité d'une analyse théorique : que représente une relation de fermeture ?
 - Nécessité de méthodes et de logiciels numériques performants
- La compréhension de cas simples représentatifs permet de développer des cas plus complexes et d'intérêt
 - Extraction des ingrédients fondamentaux
 - Vérification sur des cas plus complexes

L'approche multi-échelle pour les écoulements diphasiques Les échelles considérées



L'approche multi-échelle pour les écoulements diphasiques

Écoulements diphasiquesDes besoins de modélisation multi-échelle

- ► Température de gaine ← Évaporation de gouttes
- ► Choc froid ↔ Transfert de masse aux interfaces
- Crise d'ébullition ↔ Instabilité de l'ébullition nucléée

L'approche multi-échelle pour les écoulements diphasiques Difficultés spécifiques

Où en est-on?

- Approche similaire aux écoulements monophasiques
- ► Mais plus "en retard"
 - Utilisation industrielle : système et composant
 - ► Recherche : 3D locale et locale instantanée

Pourquoi pas au même niveau que le monophasique ? Spécificités des écoulements diphasiques

- Équations locales instantanées connues depuis moins longtemps
- ► Beaucoup de parois
- Et en plus, elles bougent!
- Pas de théorie aussi aboutie que la turbulence : à quelle "vérité" se raccrocher ?

Simulation Numérique Directe des écoulements diphasiques Pour quoi faire ?

Fermeture des modèles 3D locaux

Transfert de masse

$$\begin{split} \rho_{v}\left(\boldsymbol{v}_{v}^{i}-\boldsymbol{v}^{i}\right)\cdot\boldsymbol{n}_{v} &= \rho_{I}\left(\boldsymbol{v}_{I}^{i}-\boldsymbol{v}^{i}\right)\cdot\boldsymbol{n}_{I} \text{ sur } \boldsymbol{S}_{Iv} \\ \rho_{v}\left(\boldsymbol{v}_{v}^{i}-\boldsymbol{v}^{i}\right)\cdot\boldsymbol{n}_{v} &= \frac{\left(k_{v} \nabla T_{v}-k_{I} \nabla T_{I}\right)\cdot\boldsymbol{n}_{v}}{\mathcal{L}} \text{ sur } \boldsymbol{S}_{Iv} \end{split}$$

2. Prise de moyenne volumique

$$\frac{\partial (\alpha_{\mathbf{v}} \, \rho_{\mathbf{v}})}{\partial t} + \nabla \cdot (\alpha_{\mathbf{v}} \, \rho_{\mathbf{v}} \, \langle \mathbf{v} \rangle_{\mathbf{v}}) = \Gamma$$

$$\Gamma = \frac{1}{V} \int_{S} -\rho_{v} \left(v_{v}^{i} - v^{i} \right) \cdot n_{v} dS$$

3. Fermeture

$$\Gamma = C_1 \left(\langle T_v \rangle - T^{sat} \right) + C_2 \left(\langle T_l \rangle - T^{sat} \right)$$

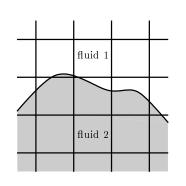
4. Domaine de validité ?

Démarche similaire au monophasique

- 1. Choix d'une configuration de référence, e.g. écoulement en canal sous-refroidi
- 2. Simulation numérique directe
- 3. "Mesure" du taux de transfert de masse

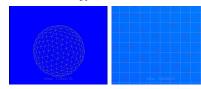
$$\Gamma = \frac{1}{V} \int_{S} -\rho_{v} \left(\mathbf{v}_{v}^{i} - \mathbf{v}^{i} \right) \cdot \mathbf{n}_{v} dS$$

4. "Mesure" de la corrélation

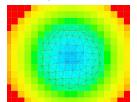

$$\Gamma_{correl} = \mathit{C}_{1}\left(\left\langle \mathit{T}_{\mathit{v}} \right
angle - \mathit{T}^{\mathit{sat}} \right) + \mathit{C}_{2}\left(\left\langle \mathit{T}_{\mathit{I}} \right
angle - \mathit{T}^{\mathit{sat}} \right)$$

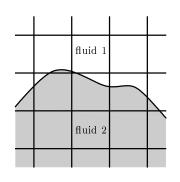
5. Comparaison et modifications éventuelles

C'est en cours...


Difficultés liées à la simulation numérique directe

- ► Toutes celles liées aux écoulements monophasiques
- Interfaces mobiles
 - Comment suivre une interface numériquement ?
 - Comment gérer des équations dans des domaines différents qui varient dans le temps ?
 - Comment imposer des conditions aux limites à des interfaces mobiles
 7


► Représentation explicite :


$$\mathbf{x}^i = \mathbf{f}(t) \Rightarrow \frac{d\mathbf{x}^i}{dt} = \mathbf{v}^i$$

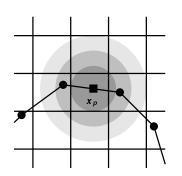
► Représentation implicite :

$$F(\mathbf{x},t) = 0 \Rightarrow \frac{\partial F}{\partial t} + \mathbf{v}^i \cdot \nabla F = 0$$

Définition d'un champ sur tout le domaine

$$\psi = \begin{cases} \psi_1 & \text{dans } \Omega_1 \\ \psi_2 & \text{dans } \Omega_2 \\ \psi^i & \text{sur } \Gamma_{12} \end{cases}$$

$$\psi = \chi \psi_1 + (1 - \chi) \psi_2 + \psi^i \delta^i$$

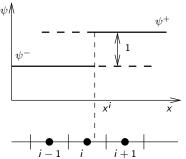

Equations "monofluide"

$$\rho \, \mathsf{C}\rho \, \frac{dT}{dt} = \nabla \cdot (\mathsf{k} \, \nabla T) - \dot{\mathsf{m}} \, \mathcal{L} \, \delta^i$$

$$\Rightarrow$$

$$(k_2 \,
abla \, T_2 - k_1 \,
abla \, T_1) \cdot \boldsymbol{n}_1 = \dot{m} \, \mathcal{L}$$

Grandeurs surfaciques → **grandeurs volumiques équivalentes**

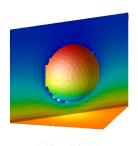


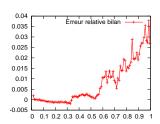
$$\psi_{ijk} = \sum_{l} \psi_{l} \, w_{ijk}^{l} \, \frac{\Delta s_{l}}{\Delta x^{3}}$$

 ψ_{ijk} approximation de ψ en ijk ψ_l valeur de ψ sur élém. surf. l Δx pas maillage fixe Δs_l aire de l'élément de surface l w_{ijk}^l poids de $ijk \leftrightarrow l$

Méthode "Ghost-fluid"

Améliorer l'approximation numérique des sauts et gradients à l'interface


Définir ψ^- et ψ^+ dans tout le domaine


$$\frac{\psi_{i} - \psi_{i-1}}{\Delta x} \rightarrow \frac{\psi_{i}^{-} - \psi_{i-1}^{-}}{\Delta x}$$

$$\frac{\psi_{i+1} - \psi_{i}}{\Delta x} \rightarrow \frac{\psi_{i+1}^{+} - \psi_{i}^{+}}{\Delta x} = \frac{\psi_{i+1}^{+} - (\psi_{i}^{-} + \psi_{i+1}^{-})}{\Delta x}$$

Solution analytique avec peu de points

Bilan d'énergie sur une bulle en évaporation

Simulation Numérique Directe des écoulements diphasiques Applications visées

Des cas en lien les besoins prioritaires

1. Ecoulement ascendant à bulles

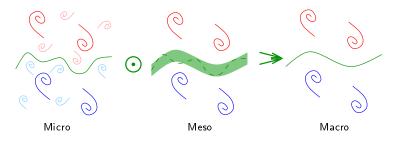
2. Ebullition pariétale

3. Interface cisaillée

(O. Lebaigue & A. Toutant, 2006)

Echelle intermédiaire entre SND et 3D local

- **Echelle de Kolmogorov** : $\simeq \mu$ m
- ▶ Taille des bulles : ≃ mm


Simulation directe turbulente $très\ chère: \simeq 10^9\ mailles\ pour\ une\ bulle$

Idée principale

- ► Capturer les grandes structures : interfaces et turbulence
- Modéliser les transferts aux échelles les plus petites : interaction interface-turbulence

Transferts interface-turbulence

La démarche poursuivie

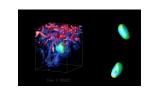
Les défis

- 1. Déterminer le modèle filtré
- 2. Déterminer le modèle discontinu équivalent

Transferts interface-turbulence

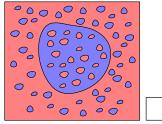
Le modèle déterminé

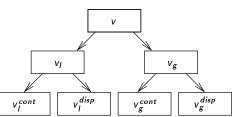
$$\nabla \cdot \tilde{\boldsymbol{u}} = 0$$


$$\frac{\partial \tilde{\rho} \, \tilde{\boldsymbol{u}}}{\partial t} + \nabla \cdot (\tilde{\rho} \, \tilde{\boldsymbol{u}} \otimes \tilde{\boldsymbol{u}}) = -\nabla \tilde{\rho} + \nabla \cdot \tilde{\boldsymbol{S}} + \nabla \cdot (\tilde{\rho} \, \tilde{\boldsymbol{\mathcal{L}}}) - \llbracket \rho \rrbracket \, \tilde{\boldsymbol{u}} \, \frac{\partial \tilde{\chi}_k}{\partial t} - (\sigma \, \tilde{\kappa} \, \tilde{\boldsymbol{n}} + \boldsymbol{\tau}_t^{ex}) \, \delta_{\tilde{\sigma}}$$

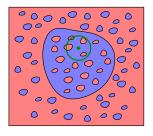
$$\frac{\partial \tilde{\chi}_k}{\partial t} = \left[\tilde{\boldsymbol{u}} \cdot \tilde{\boldsymbol{n}} + \left(\overline{\tilde{\boldsymbol{u}} \cdot \tilde{\boldsymbol{n}}}^{\sigma} - \overline{\tilde{\boldsymbol{u}}}^{\sigma} \cdot \overline{\tilde{\boldsymbol{n}}}^{\sigma} \right) + \frac{\Delta^2}{10} \left(\Delta_s(\boldsymbol{v}^0) \cdot \tilde{\boldsymbol{n}} - 2\nabla_s(\boldsymbol{v}^0) : \nabla_s \tilde{\boldsymbol{n}} \right) \right] \delta_{\tilde{\sigma}}$$

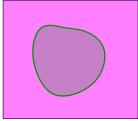
$$\boldsymbol{v}^0 = \frac{\partial \tilde{\chi}_k}{\partial t} \, \tilde{\boldsymbol{n}}$$


$$\boldsymbol{\tau}_t^{ex} = \int_{-\infty}^{+\infty} \frac{\partial \left(\overline{\tilde{\rho}} \, \tilde{\boldsymbol{u}} - \overline{\tilde{\rho}} \, \overline{\tilde{\boldsymbol{u}}} \right)}{\partial t} d\xi_3$$


- ► OUF III
- Idée validée : tests a priori
- Modèle en cours de validation : tests a posteriori
- Généralisation au cas avec transfert de masse...

D'autres échelles de modélisation Multi-champ




Pour quoi faire?

- Amélioration des modèles physiques
 - ► Taux de vide insuffisant
 - ► Transferts dépendant de la topologie
- Mieux répondre aux besoins industrielles
 - Cisaillement dans les écoulements stratifiés
 - Renoyage du cœur

Grandes interfaces

(P. Coste & A. Henriques, 2006)

Pour quoi faire?

- ► Amélioration du traitement numérique des grandes interfaces
- Amélioration des modèles physiques
 - Transferts aux interfaces
 - Distinction bulles / gouttes

Le chemin reste long...

Conclusions Et perspectives

► Pourquoi une approche multi-échelle ?

- ► Améliorer les modèles
- Améliorer la précision
- Optimisation des systèmes

▶ Comment fait-on ?

- Développement d'un cadre théorique
- Développement d'outils numériques dédiés
- Analyse de la pertinence des études menées

► Et demain ?

- ▶ Des modèles en cours de gestation
- Des logiciels plus versatiles
- ► Et le "down-scaling" ?