

Ecoulements diphasiques

Thermohydraulique cœur Méthodes et codes

eric.royer@cea.fr CEA Saclay, DM2S/SFME

Programme

- Quels sont les enjeux de la Thermohydraulique du cœur?
 - Quels sont les phénomènes limitatifs à prendre en compte?
 - Comment dimensionner le cœur?
 - Quels sont les outils et méthodes disponibles?

Enjeux de la thermohydraulique cœur

- Thermohydraulique cœur: définition?
 - Garantir la sûreté à en toutes circonstances
 - Contrôler la réactivité (réactions neutroniques)
 - Assurer le refroidissement
 - Confiner la radio-activité (intégrité des barrières)
 - Obtenir les meilleures performances possibles
 - Souplesse d'exploitation (marges)
 - Rendement élevé (conversion de l'énergie, utilisation du combustible)...
 - Le dimensionnement TH est un problème d'optimisation multicritères en interaction avec les autres disciplines
 - Matériaux: oxydation, corrosion, tenue thermique...
 - Neutronique: contre-réactions, stabilité...
 - Mécanique: vibrations, fatigue...
 - Combustible: gainage, température...

Enjeux de la thermohydraulique cœur

- Analyse des effets thermiques et hydrauliques dans le cœur du réacteur (siège de la production d'énergie thermique)
 - Conditions normales, incidentelles et accidentelles
 - Etats stationnaires et transitoires (lent ou rapide)

- Chaque filière présente ses spécificités/difficultés
 - REP
 - REB
 - PN
 - RNR...

- Echange thermique
 - Passage en ébullition: corrosion, réduction de la modération
 - Crise d'ébullition: élévation excessive de la température combustible
 - Quantité de mouvement
 - Pertes de charges: puissance de pompage ou convection naturelle
 - Répartition du débit, en particulier en canaux fermés
 - Instabilités dynamiques

- Crise d'ébullition (flux critique)
 - Dégradation très rapide de l'échange thermique (film vapeur)
 - Effet à seuil, fortement dépendant des conditions
 - Conséquences possibles: destruction du gainage, fusion du combustible
 - Solutions technologiques?

- Redistribution de débit (instabilité de Ledinegg)
 - Réduction instantanée du débit au point de redistribution
 - Perte du refroidissement (possibilité de destruction du gainage, fusion du combustible)
 - Solutions technologiques?

- Principes pour simplifier le problème
 - Découplage des effets
 - Conditions pénalisantes/enveloppes (incertitudes comprises)
 - Analyse statique d'abord
 - Approche « canal »
 - Raisonnement 1D ou multi-1D
 - Empilement de toutes les pénalités au même endroit
 - Facteur de puissance neutronique (axial et radial)
 - Hétérogénéité locale combustible
 - Conditions limites
 - Section de passage...

- Exemple d'application REP: marge au flux critique
 - Objectif: évaluer le REC ou RFTC

 $\mathsf{REC} = \Phi \mathsf{cr} \ / \ \Phi$

- Méthode: approche à deux niveaux pour obtenir les conditions « locales » utilisées par les prédicteurs de flux critique
 - Pression (P)
 - Vitesse massique (G)
 - Titre thermodynamique (x)
- La prédiction du flux critique:
 - Valeur nominale (pour Dh donné)
 - Effet de flux non uniforme
 - Effet de paroi froide
 - Effet de grille

- Exemple d'application réacteur à plaques: marge à l'ébullition
 - Objectif: évaluer le point d'ébullition (précurseur à la redistribution de débit)
 - Méthode: approche à plusieurs niveaux pour obtenir les conditions « locales »
 - Pression (P)
 - Vitesse massique (G)
 - Titre thermodynamique (x)
 - La prédiction de la température de paroi en ébullition (surchauffe Tp-Tsat):

 $\Delta Tsat=f(\Phi, P)$

 La marge est obtenue en comparant à la température de paroi en convection liquide (monophasique)

 $\mathsf{Tp},\mathsf{cl} = \mathsf{Tl} + \Phi \,/\,\mathsf{h}$

- Exemple d'application réacteur à plaques: comment arriver au sous-canal?
 - Calcul cœur
 - Calcul élément chaud avec distinction secteur/canal/piste

Les outils de simulation: petit historique

- 1970's: approche à sous-canaux (COBRA, VIPER, FLICA3...)
 - Approche homogénéisée (poreuse)
 - Hypothèse fondamentale: écoulement 1D dominant
 - Cross flow: résultent de l'écart de pression dans le plan radial (souvent avec géométrie fortement simplifiée)
 - Modélisation physique: modèle homogène + drift flux
 - 1980's-90's: codes « composant » 3D (THYC, FLICA4...)
 - Les équations de QDM sont résolues en 3D
 - La modélisation physique est peu différente de la génération précédente...
 - Mais l'on élargit les domaines d'applications (bas débit, multi-filières, échangeurs)
 - 2000's: plate-formes multi-échelles et multi-physique (Neptune)
 - Rapprochement des échelles CFD et poreuses (mêmes moteurs 3D)
 - Cohérence des lois de fermeture entre échelles

Les outils de simulation: quelle utilisation?

Les outils de simulation: quelle utilisation?

Les outils de simulation: quel avenir?

Annexes, compléments

Modèle 4 équations: système d'équations

Vapeur

$$\frac{\partial}{\partial t}\alpha_{v}\rho_{v} + \vec{\nabla}.(\alpha_{v}\rho_{v}\vec{u}_{v} - K_{cv}\vec{\nabla}c) = \Gamma_{lv} + \Gamma_{wv}$$
 Mass balance

Pour arriver à 6:

$$U_{v} - U_{l} = f(P, G...)$$
$$h_{v} = h_{v,sat}$$

Modèle 4 équations: lois de fermeture

- Frottement pariétal
 - Coefficients isotherme
 - Correcteurs

$$\vec{\tau}_{f} = -f \cdot \frac{\rho \|\vec{u}\| \vec{u}}{2D_{hy}}$$
$$f = f_{iso} \cdot f_{Tp} \cdot f_{2\phi} \qquad f_{iso}^{turb} = a \operatorname{Re}^{-b}$$

- Echange thermique
 - Convection monophasique (Dittus-Boelter)
 - Ebullition nucléée (Thom, Jens-Lottes)

$$T_p^{GNV} = T_{sat} + \Delta T_{sat}$$
$$\phi_{vap} = K \left(T_p - T_{sat} \right)^n$$

- Flux critique
- Post-assèchement

Modèle 4 équations: lois de fermeture

- Vaporisation en paroi
 - Fraction de flux
 - Décomposition de flux

$$\varphi_p = \varphi_{vap} + \varphi_{\ell}$$
$$\Gamma_{p,vap} = \varphi_{vap} / (h_v - h_l)$$

- Condensation/flashing
 - Échange thermique liquide/vapeur

- Ecart de vitesse
 - Tabulations du glissement
 - Modèle de dérive (drift)

Prédicteur de flux critique

- Fort caractère empirique
 - Directement issu des essais
 - Délicat à « extrapoler »
 - Corrélations propriétaires, associée à un code et un type d'assemblage

$$\varphi_{U}^{crit} = \left[(2,022 - 0,006238 \, p) + (0,1722 - 0,001427 \, p) e^{(18,177 - 0,005987 \, p)\tau} \right] \\ * \left[(0,1484 - 1,596\tau + 0,1729\tau |\tau|) (2,326G + 3271) \right] \\ * \left[1,157 - 0,869\tau \right] \\ * \left[0,2664 + 0,8357e^{-124,1D_{H}} \right] \\ * \left[0,8258 + 0,0003413 (h_{l}^{sat} - h_{l}) \right]$$

- Formulation de type nominale + corrections
 - Paroi froide
 - Effet de grille
 - Flux axial non uniforme
 - Effet de géométrie

$$\boldsymbol{\varphi}^{crit} = \boldsymbol{\varphi}_{U}^{crit} \; \frac{F_{PF} \; F_{G} \; F_{A}}{F_{NU}}$$

Occurrence du flux critique

Occurrence du flux critique: effet des grilles

Conditions limites de puissance

Facteur de point chaud total F^{T}_{Q}

œ

RTV: phénoménologie et scenario

Validation: AGATE

Validation: PELCOS

- 70 bars
- 750, 1500 kg/m2/S
- Measurement of outlet quality (0.02 0.31)
- Optimization of turbulent viscosity

6

0