UNE INTRODUCTION AUX ECOULEMENTS DIPHASIQUES Le taux de présence : techniques expérimentales et modèles

HERVE LEMONNIER

DTN/SE2T, CEA/Grenoble, 38054 Grenoble Cedex 9 Tél. 04 38 78 45 40, herve.lemonnier@cea.fr

INSTN, décembre 2009

FONCTION INDICATRICE DE PHASE

• Définition de la fonction indicatrice de phase :

$$X_k(\mathbf{r}, t) = \begin{cases} 1 & \text{si } M(r) \in \text{ phase } k, \\ 0 & \text{si } M(r) \notin \text{ phase } k. \end{cases}$$

• Moyennes spatiales :

phasique :
$$\langle f \rangle_n \triangleq \frac{1}{D_{kn}} \int_{D_{kn}} f_k dV,$$

globale : $\langle f \rangle_n \triangleq \frac{1}{D_n} \int_{D_n} f dV.$

OPÉRATEURS DE MOYENNE (SUITE)

• Moyennes temporelles :

phasique :
$$\overline{f}_{k}^{X}(t) \triangleq \frac{1}{T_{k}} \int_{[T_{k}]} f(\tau) d\tau$$
,
globale : $\overline{f}(t) \triangleq \frac{1}{T} \int_{[T]} f(\tau) d\tau$.

• Propriétés de commutativité :

$$\overline{R_{kn} < f_k >_n} = \langle \alpha_k \overline{f}_k^X \rangle_n.$$

- Taux de présence de phase : moyennes de la fonction indicatrice de phase
- Taux de présence du gaz : taux de vide (void fraction, gas hold-up).

TAUX DE VIDE (α)

P.

• Taux de présence local (gaz, taux de vide) :

$$\alpha_G(\mathbf{r},t) \triangleq \overline{X_G} = \frac{T_G}{T}.$$

- Fraction spatiale instantanée.
 - Taux de présence linéique :

$$R_{G1}(t) \triangleq \langle X_G \rangle_1 = \frac{L_G}{L_G + L_L} = \frac{L_G}{L}$$

- Taux de présence surfacique :

$$R_{G2}(t) \triangleq \langle X_G \rangle_2 = \frac{A_G}{A_G + A_L} = \frac{A_G}{A}$$

- Taux de présence volumique :

$$R_{G3}(t) \triangleq \langle X_G \rangle_3 = \frac{V_G}{V_G + V_L} = \frac{V_G}{V}$$

PROPRIÉTÉS FONDAMENTALES

- Commutativité (f = 1) : $\overline{R_{kn}} = \langle \alpha_k \rangle_n = \overline{\langle X_k \rangle_n}$.
- Taux de présence moyen.
 - sur une ligne,

$$\overline{R_{G1}} = \frac{1}{T} \int_{[T]} R_{G1}(\tau) \,\mathrm{d}\tau = \frac{1}{L} \int_L \alpha_G \mathrm{d}L$$

- sur une section,

$$\overline{R_{G2}} = \frac{1}{T} \int_{[T]} R_{G2}(\tau) \,\mathrm{d}\tau = \frac{1}{A} \int_A \alpha_G \mathrm{d}A$$

– dans un volume,

$$\overline{R_{G3}} = \frac{1}{T} \int_{[T]} R_{G3}(\tau) \,\mathrm{d}\tau = \frac{1}{V} \int_{V} \alpha_{G} \mathrm{d}V$$

• Les différentes définitions du taux de présence sont précises. Ce sont toujours des moyennes de la FIP.

Taux de présence : techniques expérimentales et modèles

AUTRES DÉFINITIONS

 \hat{A}

• Aire interfaciale volumique (instantanée) :

$$\Gamma_3(t) \triangleq \frac{A_i(t)}{V}$$

• Aire interfaciale locale :

$$\gamma = \sum_{\text{disc.}\in[\mathbf{T}]} \frac{1}{|\mathbf{v}_i \cdot \mathbf{n}_k|}$$

• Identité (commutativité des termes d'interaction), aire interfaciale moyenne :

$$\overline{\Gamma_3} \equiv \not< \gamma \not>_3$$

• Quantité mesurable.

TAUX DE VIDE : TECHNIQUES DE MESURE

- Taux de vide local,
 - Sondes électriques
 - Sondes optiques
- Taux de présence sur une ligne,
 - Atténuation photonique (X ou γ)
- Taux de présence sur la section,
 - Rayons X ou γ (one-shot)
 - Densitométrie multi-faisceaux
 - Diffusion de neutrons (acier, eau-vapeur HP-HT)
 - Densitométrie à impédance
- Taux de vide moyen (volumique),
 - Vannes à fermeture rapide
 - Variation de pression hydrostatique
 - Méthodes ultrasonores (Bensler, 1990).
- Imagerie médicale, CT et MRI

TAUX DE VIDE LOCAL

Sondes électriques (résistivité) : Mesure de la fonction indicatrice de phase, $X_L(\mathbf{r}, t)$ (FIP).

• Milieu dispersé isolant

Temps

7/38

Taux de présence : techniques expérimentales et modèles

œ

TAUX DE VIDE LOCAL

Sondes optiques (indice optique) : Mesure de la fonction indicatrice de phase, $X_G(\mathbf{r}, t)$ (FIP).

DÉTERMINATION DES SEUILS

Œ

• $\alpha = \overline{X_L}$, dépend du seuil :

 $S_1 > S_2 \Rightarrow \alpha_{L1} < \alpha_{L2}.$

• Méthode de référence :

$$\Delta p \to \overline{R_{G2}}$$

• Rappel :

$$\langle \alpha_G \rangle_2 = \overline{R_{G2}}$$

• On détermine sur A, $\alpha_G(S)$. On ajuste S:

$$\langle \alpha_G(S) \rangle_2 = \overline{R_{G2}}$$

• Contrôle de cohérence.

SONDES OPTIQUES ET ÉLECTRIQUES

Taux de présence : techniques expérimentales et modèles

SONDES À POINTES MULTIPLES

- 2 pointes : hypothèses statistiques et bulles sphériques, histogramme des cordes→diamètre moyen, vitesse moyenne des bulles.
- 4 pointes, négliger la courbure, orientation (\mathbf{n}_k) , vitesse de déplacement de l'interface, $\mathbf{v}_i \cdot \mathbf{n}$
- Aire interfaciale locale,

$$\gamma = \sum_{\text{disc.}\in[\mathbf{T}]} \frac{1}{|\mathbf{v}_i.\mathbf{n}_k|}$$

• Diamètre de Sauter moyen (D_{32}) , identité (bulles)

$$\gamma = \frac{6\alpha}{D_{SM}}$$

11/38

ATTÉNUATION PHOTONIQUE

- X ou γ .
- Faisceau collimaté, mono-énergie (raie)
- Loi de Beer-Lambert :

 $dI = -\mu I dx, \quad [\mu] = L^{-1}$

- Absorption linéaire, μ coefficient d'absorption linéique.
- $\frac{\mu}{\rho}$: absorption spécifique, dépend de f.

12/38

MISE EN OEUVRE

- Générateur X, ou source γ
- Réception : photo-multiplicateur (NaI, semi-conducteurs), compteur
- $\bullet~$ Collimation : bloc percé, 0,5 mm
- Faisceau collimaté, mono-énergie (raie)
- Intégration sur épaisseur finie

$$I = I_0 \exp(-\mu L) = I_0 \exp\left(-\frac{\mu}{\rho}\rho L\right)$$

• A basse pression insensible au gaz.

TAUX DE PRÉSENCE SUR UNE LIGNE

Ecoulement eau-air, liquide vapeur.

- Diamètre D, épaisseur des parois e/2.
- Loi de Beer-Lambert :

$$I = I_0 \exp(-\mu_p e) \exp(-\mu_L (1 - R_{G1})D)$$
$$\exp(-\mu_G R_{G1}D)$$

• Taux de présence linéique :

$$R_{G1}(z,t) \triangleq \frac{L_G}{L_G + L_L} = \frac{L_G}{D}$$

• Approximation basse pression :

$$I_G = I_0 \exp(-\mu_p e)$$
$$I_L = I_0 \exp(-\mu_p e) \exp(-\mu_L D)$$
$$I = I_0 \exp(-\mu_p e) \exp(-\mu_L (1 - R_{G1})D)$$
$$\ln L/L_L$$

$$R_{G1} = \frac{\ln I/I_L}{\ln I_G/I_L}$$

Taux de présence : techniques expérimentales et modèles

SOURCES D'ERREURS

• Contraste \rightarrow basse énergie

$$\frac{I_G}{I_L} = \exp\left(\frac{\mu_L}{\rho_L}\rho_L D\right)$$

 $\bullet\,$ Erreurs statistique, bruit $\rightarrow\,$ haute énergie

$$I \propto N, \quad \frac{\Delta N}{N} \propto \sqrt{\frac{1}{N}}$$

15/38

- Fluctuations de taux de vide : $\overline{\exp I} \neq \exp \overline{I}$, $\Delta R_G \approx 0, 20$ (slug), $\Delta R_G \approx 0, 05$ (churn).
- Stabilité de la source : faisce au de référence, $I \to \frac{I}{I_0'}$
- Durcissement de spectre, étalonnage direct, $I(R_L)$. Filtres.

TAUX DE PRÉSENCE LINÉIQUE

• Eau stagnante : $\overline{R_{G2}} = 0.01, 0.04, 0.07, 0.10, 0.13, 0.16, 0.19.$

Taux de présence : techniques expérimentales et modèles

TAUX DE PRÉSENCE LINÉIQUE

D'après Bensler (1990, p. 61)

- Ecoulement diphasique, $J_L = 2 \text{ m/s}$: $\overline{R_{G2}} = 0.03, 0.061, 0.069, 0.089, 0.123.$
- Pic de taux de vide en paroi, wall peaking, toujours un défi pour la modélisation...
- Transition, plat-concave, amas de bulles.

æ

TAUX DE PRÉSENCE SURFACIQUE

æ

• Moyenne spatiale $\overline{R_{G2}}$,

$$\overline{R_{G2}} = \frac{1}{\pi R^2} \int_{-R}^{R} \overline{R_{G1}}(y) \sqrt{R^2 - y^2} \mathrm{d}y$$

• Inversion tomographique, axisymétrie

 $\overline{R_{G1}}(y) \Leftrightarrow \alpha_G(r)$

$$\overline{R_{G1}}(y,\theta) \Leftrightarrow \alpha_G(X,Y)$$

- Valeur instantanée, $R_{G2}(t)$
- Limitations connues, Compton, diffusion

 $\Delta R_{G2} \leqslant 0,05$

$$0 < R_{G2} < 0, 8$$

TAUX DE PRÉSENCE SURFACIQUE

• Densitomètre multi-faisceaux,

 $\overline{R_{G1}}(\theta) \Leftrightarrow \alpha_G(r)$

• Tomographique à rayons X

 $\overline{R_{G1}}(\theta,\phi) \Leftrightarrow \alpha_G(x,y)$

- Diffusion de neutrons à 90 $^\circ$
- Traverse l'acier, diffusion par hydrogène
- Cinématographie.

SUPER MOBY DICK

Taux de présence : techniques expérimentales et modèles

RESONANCE MAGNETIQUE NUCLEAIRE

- Résonance magnétique nucléaire, RMN, imagerie par résonance (IRM)
 - Pas d'interaction mécanique avec l'écoulement,
 - Aimantation (H, F), traceur passif, champ magnétiques
 - Masse volumique moyenne (Taux de présence local), vitesses
- Résolution spatiale et temporelle
 - 0D, 1D, 2D, etc.
 - Grandeurs moyennes, filtres spatiaux arbitraires (LES).
 - Mélange et transport turbulent.
- Examen de routine, imagerie corps entier (statique), 1 mm³, débit artériel, encore en développement pour l'imagerie en vitesse.

IMAGERIE EN VITESSE D'UNE GOUTTE EN LÉVITATION

Imagerie en vitesse, d'après Amar et al. (2005, Fig. 13).

VITESSE ET TAUX DE PRÉSENCE (EC. BULLES)

Ecoulement à bulles horizontal, D = 13.9 mm, d'après Sankey *et al.* (2009, Figs 7 and 10). L'échelle de vitesse est en m/s, pas en mm/s.

<u>A</u>

DENSITOMÉTRIE À IMPÉDANCE

• Impédance du milieu diphasique, excitation E, signal I.

$$I = DE\sigma_C(T, c_1, c_2, \cdots)f(R_{G3}, \cdots)$$

• Résistif, $\sigma_{2\phi}$, capacitif, $\epsilon_{2\phi}$, élimination effets interfaces, 10 < f < 100 kHz

IMPÉDANCE-COMPOSITION

- Configuration électrodes : régime d'écoulement.
 - Anneaux : stratifié, réponse quasi-linéaire, conducteur 1D.
 - Électrodes face à face, réduction du volume de mesure, écoulement à bulles, ondes de densité.
- Evolution spatiale lente : $R_{G3} \approx R_{G2}(t)$
- Sensibilité en température : 1°C $\approx 1\%$ de taux de vide.
- Méthode de référence, élimine les effets de σ_C , $I \to \frac{I}{I_0}, I_0 = DE\sigma_C(T, c_1, c_2, \cdots)f(0)$
- Etalonnage (méthode de référence), modélisation numérique (BEM)
- Optimisation géométrique (BEM) : $f(R_{G2}, \dots) \approx g(R_{G2})$.

ECOULEMENTS EAU-HUILE

- D'après Boyer (1992, p. 98)
- Modèles théoriques, dispersion, Maxwell, Bruggemann, $\sigma_D/\sigma_C \rightarrow 0$,

$$\sigma_{2\phi} \approx \sigma_C (1 - R_{D3})^{3/2}$$
$$\epsilon_{2\phi} \approx \frac{3}{2} \epsilon_D + \left(\epsilon_C - \frac{3}{2} \epsilon_D\right) (1 - R_{D3})^{3/2}$$

FRACTION VOLUMIQUE

• Vannes à fermeture rapide, décantation :

$$R_{L3} = \frac{V_L}{V}$$

• Variation de pression hydrostatique ($v_L \ll 1 \text{ m/s}$)

$$\Delta p = \rho g H$$

$$\rho \triangleq \rho_G R_{G3} + \rho_L (1 - R_{G3})$$

MODÈLES SIMPLES DE TAUX DE VIDE

- Idéalisation de l'écoulement, quasi-équilibre entre phases.
- Déséquilibre mécanique : $\overline{w}_G^X \neq \overline{w}_L^X$
- Profils de vitesse.

MODÈLE HOMOGÈNE (1D-1V)

• 1D-1V,
$$\overline{w}_G^X = \overline{w}_L^X = w$$

- On se donne : $\overline{Q}_G, \overline{Q}_L$.

- On cherche :
$$\overline{R_{G2}} = \langle \alpha_G \rangle_2$$
.

• Etablissement des 4 modèles, définition du débit moyen,

$$\overline{Q}_G \triangleq \int_{A_G} w_G \, \mathrm{d}A = \overline{A_G < w_G >_2} = A \overline{R_{G2} < w_G >_2}$$

• Commutativité des moyennes, vitesse uniforme,

$$\overline{Q}_G = A\overline{R_{G2}} < w_G >_2 = A \not\leqslant \alpha_G \overline{w}_G^X \not\geqslant _2 = A\overline{R_{G2}} w_G$$

• Pour le liquide,

$$\overline{Q}_L = A(1 - \overline{R_{G2}})w_L$$

• Vitesses égales,

 $\tilde{\Theta}$

$$\frac{\overline{Q}_G}{\overline{Q}_L} = \frac{\overline{R_{G2}}}{1 - \overline{R_{G2}}}, \qquad \overline{R_{G2}} = \frac{\overline{Q}_G}{\overline{Q}_G + \overline{Q}_L} = \beta$$

MODÈLE DE BANKOFF (2D-1V)

- 2D-1V, $\overline{w}_G^X = \overline{w}_L^X = w_C \left(\frac{y}{R}\right)^{\frac{1}{m}}, \quad \alpha_G = \alpha_C \left(\frac{y}{R}\right)^{\frac{1}{m}}$
- On se donne : \overline{Q}_G , \overline{Q}_L . On cherche : $\overline{R_{G2}} = \langle \alpha_G \rangle_2$.
- Définition des débits moyen,

 $\overline{Q}_G = A \not\leqslant \alpha \overline{w}_G^X \not\geqslant_2 = Af(w_C, \alpha_C, m, n), \ \overline{Q}_L = A \not\leqslant (1 - \alpha) \overline{w}_L^X \not\geqslant_2 = Ag(w_C, \alpha_C, m, n)$

• Calcul des vitesses et taux de présence moyens,

$$\langle \overline{w}_L^X \rangle_2 = h(w_C, m), \quad \overline{R_{G2}} = k(\alpha_C, n)$$

• On élimine α_C et w_C ,

$$\overline{R_{G2}} = K\beta, \quad K = \frac{2(m+n+mn)(m+n+2mn)}{(n+1)(2n+1)(m+1)(2m+1)}, \quad K = 0, 6 \div 1, \ 2 \leqslant m, n \leqslant 7$$

• Corrélation de Bankoff, eau vapeur (p en bar),

$$K = 0,71 + 0,00145p$$

MODÈLE DE WALLIS (1D-2V)

- 1D-2V, $\overline{w}_G^X = w_G$, $\overline{w}_L^X = w_L$, $\alpha_G(r) = \alpha_G$, $w_G \neq w_L$
- On se donne: $\overline{Q}_G, \overline{Q}_L$. On cherche : $\overline{R_{G2}} = \langle \alpha_G \rangle_2$
- Définition des débits moyens,

$$\overline{Q}_G = A \not\leqslant \alpha \overline{w}_G^X \not\geqslant {}_2 = A \overline{R_{G2}} w_G$$
$$\overline{Q}_L = A \not\leqslant (1 - \alpha) \overline{w}_L^X \not\geqslant {}_2 = A (1 - \overline{R_{G2}}) w_L$$

• On calcule le taux de présence moyen,

$$\overline{R_{G2}} = \frac{\overline{Q}_G w_L}{\overline{Q}_L w_G + \overline{Q}_G w_L} = \frac{\beta}{1 + \frac{(1 - \overline{R_{G2}})(w_G - w_L)}{J}}$$

• Ex. fermeture, écoulement à bulles, w_{∞} , vitesse ascension, isolée (Clift *et al.*, 1978)

$$w_G - w_L = w_\infty (1 - \overline{R_{G2}}), \quad w_\infty = f(D, \sigma, \rho_L, \rho_G, \mu_L, \cdots)$$

• Diagramme de Wallis (Wallis, 1969), colones à bulles, analogie transferts de masse.

DIAGRAMME DE WALLIS

• Flux volumique :

$$j_k \triangleq \alpha_k \overline{w}_k^X = \overline{X_k w_k}, \quad j = j_1 + j_2$$

• Vitesse de dérive : vitesse relative au centre de volume,

$$v_{kj} \triangleq \overline{w}_k^X - j$$

• Flux de dérive, densité de flux par rapport au centre de volume,

$$j_{GL} = \alpha_G (\overline{w}_k^X - j)$$

• Hypothèse 1D :

$$J_{GL} = \langle j_{GL} \rangle_2 = \overline{R_{G2}}(w_G - J) = (1 - \overline{R_{G2}})J_G - \overline{R_{G2}}J_L \qquad (1)$$

• Définition : $J = J_G + J_L = \overline{R_{G2}}w_G + (1 - \overline{R_{G2}})w_L$,

$$J_{GL} = \overline{R_{G2}}(1 - \overline{R_{G2}})(w_G - w_L) = w_{\infty}\overline{R_{G2}}(1 - \overline{R_{G2}})^2$$
(2)

32/38

• Corrélation pour les écoulements à bulles (fermeture), mousses.

DIAGRAMME DE WALLIS

R

- Co-courant J_L et $J_G > 0$, 1 point de fonctionnement.
- Contre-courant $J_L < 0$, 2 états possibles.
- Limite de l'écoulement à contrecourant, $J_L < -J_{LT}$.

33/38

MODÈLE DE ZUBER & FINDLAY (2D-2V)

- **2V-2D**. On se donne : \overline{Q}_G , \overline{Q}_L . On cherche : $\overline{R_{G2}} = \langle \alpha_G \rangle_2$,
- Définition de la vitesse de dérive locale,

$$\overline{w}_{Gj}^X = \overline{w}_G^X - j = (1 - \alpha_G)(\overline{w}_G^X - \overline{w}_L^X)$$

• On calcule le flux de dérive sur la section,

$$\langle \alpha_G \overline{w}_{Gj}^X \rangle_2 = \langle \alpha_G \overline{w}_G^X \rangle_2 - \langle \alpha_G j \rangle_2$$

• Nouvelles inconnues :

$$\widetilde{w}_{GJ} = \frac{\not \leqslant \alpha_G \overline{w}_{Gj}^X \not \geqslant 2}{\not \leqslant \alpha_G \not \geqslant 2}, \quad C_0 = \frac{\not \leqslant \alpha_G j \not \geqslant 2}{\not \leqslant \alpha_G \not \geqslant 2 \not \leqslant j \not \geqslant 2}$$

• Modèle de Zuber & Findlay (dégénère sur les modèles précédents)

$$\overline{R_{G2}} = \frac{J_G}{C_0 J + \widetilde{w}_{GJ}} = \frac{\beta}{C_0 + \frac{\widetilde{w}_{GJ}}{J}}$$

• Diagramme de Zuber & Findlay : $\frac{J_G}{R_G} = C_0 J + \widetilde{w}_{GJ}$

FERMETURES DU MODÈLE DE ZUBER & FINDLAY

- Fermetures : C_0 , pente, \tilde{w}_{GJ} , ordonnée à l'origine. Dépend du régime d'écoulement (Ishii, 1977).
- Comprendre $\overline{R_{G2}} \to R_G$,

$$C_0 = \left(1, 2 - 0, 2\sqrt{\frac{\rho_G}{\rho_L}}\right) \underbrace{\left(1 - \exp(-18R_G)\right)}_{\text{ébullition}}$$

• Ecoulements à bulles :

$$\widetilde{w}_{GJ} = (C_0 - 1)J + 1, 4\left(\frac{\sigma g(\rho_L - \rho_G)}{\rho_L^2}\right)^{1/4} (1 - R_G)^{7/4}$$

• Ecoulements à poches :

$$\widetilde{w}_{GJ} = (C_0 - 1)J + 0,35 \left(\frac{gD(\rho_L - \rho_G)}{\rho_L}\right)^{1/2}$$

FERMETURES DU MODÈLE DE ZUBER & FINDLAY

• Ecoulements agités :

$$\widetilde{w}_{GJ} = (C_0 - 1)J + 1, 4\left(\frac{\sigma g(\rho_L - \rho_G)}{\rho_L^2}\right)^{1/4}$$

• Ecoulements annulaires :

$$\widetilde{w}_{GJ} = \frac{1 - R_G}{R_G + \left(\frac{1 + 75(1 - R_G)}{\sqrt{R_G}}\frac{\rho_G}{\rho_L}\right)^{1/2}} \left(\sqrt{\frac{gD(\rho_L - \rho_G)(1 - R_G)}{0,015\rho_L}}\right)$$

POUR EN SAVOIR PLUS

- Les modèles de taux de vide : Delhaye (2008)
- Les modèles de dérive, (drift-flux) : Wallis (1969)
- Pour les fermetures : Ishii (1977), voir aussi Ishii & Hibiki (2006).

REFERENCES

- Amar, A., Gross-Hardt, E., Khrapitchev, A A, Stapf, S, Pfennig, A, & Bluemich, B. 2005. Visualizing flow vortices inside a single levitated drop. J Mag. Res., 177, 74–85.
- Bensler, H. P. 1990. Détermination de l'aire interfaciale du taux de vide et du diamètre moyen de Sauter dans un écoulement à bulles à partir d'un faisceau d'ultrasons. Ph.D. thesis, Institut National Polytechnique de Grenoble, France.
- Boyer, Ch. 1992. Etude d'un procédé de mesure des débits d'un écoulement triphasique de type eau-huile-gaz. Ph.D. thesis, Institut National Polytechnique de Grenoble, France.
- Clift, R., Grace, J. R., & Weber, M. E. 1978. *Bubbles, drops, and particles*. Academic Press Inc.
- Delhaye, J.-M. 2008. *Thermohydraulique des réacteurs nucléaires*. Collection génie atomique. EDP Sciences. Chap. 7-Modélisation des écoulements diphasiques en conduite, pages 231–274.
- Ishii, M. 1977. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Tech. rept. 77-47. Argonne Nat. Lab., USA.
- Ishii, M., & Hibiki, T. 2006. Thermo-fluid dynamics of two-phase flows. Springer.
- Jeandey, Ch., Gros d'Aillon, L., Bourgine, R., & Barrierre, G. 1981. Autovaporisation d'écoulements eau-vapeur. Tech. rept. (R)TT 163. CEA/Grenoble, Grenoble, France.
- Sankey, M., Yang, Z., Gladden, L., Johns, M. L., & Newling, D. Listerand B. 2009. SPRITE MRI of bubbly flow in a horizontal pipe. J. Mag. Res, **199**, 126–135.

Wallis, G. B. 1969. One dimensional two-phase flow. McGraw-Hill.

SUGGESTION D'APPROFONDISSEMENT

Objectif du travail personnel : mettre en oeuvre les modèles de taux de vide sur des données expérimentales. Construire le diagramme de Wallis et Zuber & Findlay.