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1. Introduction 
 
This course is a first introduction to two-phase flow modelling. Its prerequisites are a good 
knowledge of tensorial calculus and a basic knowledge of the distribution theory, with of 
course a good knowledge of classical fluid mechanics. The aim of this course is to present in a 
detailed manner the balance equations governing two-phase flows, which are useful to the 
numerical prediction of such flows. Such a course cannot be exhaustive due to the richness of 
the subject, but we have tried to give to the students the main tools which are necessary to 
master before entering in the numerical tools devoted to two-phase flow studies. These tools 
can be classified in two main categories. The first one which has emerged in the past decades 
is based on the RANS approach (RANS means Reynolds Averaged Navier-Stokes). This 
category is particularly useful for engineering applications where only the large scales (or 
tendencies) of the flow fields are desired. The second category is grouped into the acronym 
DNS (for Direct Numerical Simulation). It is completely different from the first since all the 
flow details (in space as well as in time) are solved numerically. The first category of tools is 
based on averaged balance equations, in opposition to the second category which is based on 
local instantaneous (unaveraged) ones. The major difficulty of the RANS approach is the 
closure problem posed by the averaged equations. During the averaging process, a lot of 
information has been lost (since the small flow details are not accessible in the solution). 
However, the mean (average) effect of the lost details on the averaged quantities is not 
negligible at all. As a consequence, the physicist must provide closure laws for a certain 
number of unknown terms appearing in the averaged equations. Therefore, the main difficulty 
of the RANS approach is essentially of mathematical and physical nature. The difficulties of 
the DNS approach are completely different. Here, the closure issue is inexistent since the 
local instantaneous balance equations are solved directly, without any kind of averaging. The 
difficulty appears essentially in the large amount of flow details which are necessary to 
calculate. Very powerful computers are necessary, with large quantities of memory. Even 
with such powerful computers, the flows which are amenable to simulate are quite restricted 
in terms of their Reynolds number, number of mobile interfaces (like bubbles or droplets 
interfaces) and so on… In addition, special tracking algorithms are often necessary to 
simulate accurately these mobile interfaces. So we can say that the major difficulties 
encountered in the DNS approach are essentially numerical and of data processing nature. 
 
The plan of this course is the following one. The local instantaneous balance equations are 
presented in section 2. These equations are useful in a two-fold manner. First, they are the 
basic equations solved by the DNS tools. Second, they also form the theoretical basis to 
develop the averaged equations which are solved by the RANS tools. The local instantaneous 
(unaveraged) equations are sometimes called the microscopic equations (or equations valid at 
the microscopic level of description) and the averaged equations are sometimes called the 
macroscopic ones. The averaged balance equations are derived in the sections 3 and 4. 
Section 3 presents the so-called two-fluid model. The two-fluid model constitutes a very 
general mathematical frame where the equations are written for the two phases in a 
symmetrical way, without assuming any particular interfacial configuration (or flow regime). 
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Section 4 is devoted to dispersed two-phase flows, which groups bubbly, droplet and 
particulate flows. One of the two phases is assumed to be dispersed in a large number of 
inclusions (or particles or globules) into the other phase which is called the continuous (or 
carrier) phase. Due to the obvious dissymmetry of such kinds of flows, the averaged equations 
can be written is a dissymmetrical manner, reflecting the flow dissymmetry. The dispersed 
phase is described in a manner analogous to the molecules in the context of the kinetic theory 
of gases. Several advantages can be gained by using this kind of description: the equations for 
the dispersed phase are easier to derive and to interpret since they resemble to the equations 
governing a single particle. The price to pay is a lost of generality and the difficulty to make 
the connection with the other (continuous) phase which is always treated in the context of the 
two-fluid model. Due to the fact that the equations for the dispersed phase are treated in a 
different manner than the equations for the continuous phase, this approach is called hybrid. 
The section 5 is devoted to the simplified study of various special cases. At this time, only the 
case of the terminal velocity of a rising bubble in a liquid has been presented. The last section 
6 gives a comparison of the equations used in the NEPTUNE_CFD code to the exact 
equations derived in the previous sections. This gives an example of numerical application to 
the reader in the context of the RANS approach. The major assumptions made by the 
NEPTUNE-CFD team are listed and the simplified equations are presented. 
 

2. Local instantaneous balance equations 
 

2.1. Topological equations 
 
Let: 
 

( ) 0t,xF =           (2.1) 
 

be the geometrical equation defining the different interfaces in the flow. Let F be positive in 
phase 1 and F be negative in phase 2. The Phase Indicator Function (PIF) is a binary function 
which can be defined as: 
 

( ) ( ) ( )( t,xFYt,x1t,x 21 = )χ−=χ        (2.2) 
 

where Y is the Heaviside distribution. The unit vector normal to the interface and directed 
outward from phase k (k = 1,2) can be defined classically as (Aris, 1962): 
 

F/Fnn 12 ∇∇=−=          (2.3) 
 

Let w be the velocity field associated to the interfacial surface. As F is identically zero for all 
points located on the interface, its convective time derivative at the velocity w is nil: 
 

0F.w
t
F

=∇+
∂
∂          (2.4) 

 
From (2.3)-(2.4), one can deduce the normal displacement speed of the interface (Delhaye, 
1981): 
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F
t/Fn.wn.w 12 ∇

∂∂
−=−=         (2.5) 

 
One important remark is that two different velocity fields w differing only through their 
tangential component wt = w – (w.n)n give rise to the same interface motion according to Eq. 
(2.4). Therefore, the normal velocity component is the only one to be related unambiguously 
to the surface motion. From their definitions (2.2), one can deduce the following expressions 
for their spatial and time derivatives: 
 

( )

( )
t
FF

tt

FF

21

21

∂
∂

δ=
∂
χ∂

−=
∂
χ∂

∇δ=χ−∇=χ∇
        (2.6) 

 
where δ is the Dirac distribution, which is the derivative of the Heaviside distribution Y. From 
(2.4) and (2.6), one can deduce the following topological equation: 
 

2,1k0.w
t k
k ==χ∇+

∂
χ∂

        (2.7) 

 
From relations (2.3) and (2.6)1, on can also deduce: 
 

( ) IkkIkk nFF.n δ−=χ∇⇔δ≡∇δ=χ∇−      (2.8) 
 

where δI is a Dirac distribution having the different interfaces as a support. It is called a local 
instantaneous interfacial area concentration by Kataoka (1986). 
 
Let us finish this section by remarking some interesting properties of the PIF. As they are 
binary functions, they verify that: 
 

021

K
n

K

=χχ
χ=χ

          (2.9) 

 
As it will be seen later, the averaged fractions of presence of the two phases are defined as the 
averages of the corresponding PIF (αK = <χK> whatever the kind of averaging operator 
denoted by < >). However, the two averaged fractions of presence αK are not binary 
functions; hence do not verify relations like (2.9). This is an important difference between 
local-instantaneous and averaged quantities and has some consequences on the corresponding 
balance equations. The advantage of the relations (2.9) verified by the PIF is that we can 
write, for any two quantities Ak and Bk characterizing phase k: 
 

( )( ) KKKKKKK BABA χ=χχ         (2.10) 
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2.2. Mass balances 
 
Let ρk and vk being the density and velocity fields for phase k. A so-called “single fluid” 
density and a “single fluid” velocity can be defined as: 
 

∑∑ χ≡ρχ≡ρ
k

kk
k

kk vv,         (2.11) 

 
Due to the property (2.10), we can write: 
 

∑ ρχ=ρ
k

kkk vv          (2.12) 

 
When there is no net mass generation in the two-phase medium as a whole, the “single fluid” 
verifies the well known mass balance equation: 
 

( ) 0v.
t

=ρ∇+
∂
ρ∂          (2.13) 

 
Hence, inserting (2.11) and (2.12) into (2.13): 
 

0v.
t k

kkk
k

kk =⎟
⎠

⎞
⎜
⎝

⎛
ρχ∇+⎟

⎠

⎞
⎜
⎝

⎛
ρχ

∂
∂ ∑∑        (2.14) 

 
Splitting derivatives, Eq. (2.14) can be rewritten: 
 

( ) 0.v
t

v.
t kk

k

k
kkk

k

k
k =⎟

⎠
⎞

⎜
⎝
⎛ χ∇+

∂
χ∂

ρ+⎟
⎠
⎞

⎜
⎝
⎛ ρ∇+

∂
ρ∂

χ ∑∑     (2.15) 

 
Inside one of the two phases (i.e. outside the interfacial surface), the derivatives of the PIF are 
nil, according to their expressions (2.6), and one is left with the usual mass balance equation 
for phase k (k = 1 or 2): 
 

( ) 0v.
t kk
k =ρ∇+

∂
ρ∂

         (2.16) 

 
Combining (2.16) with (2.15) gives the following equation valid on the interfaces: 
 

( ) 0.wv.w
t kk

0

k
k

k
k =

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
χ∇−+χ∇+

∂
χ∂

ρ∑
4434421

      (2.17) 

 
Taking the topological equation (2.7) into account, the first two terms disappear, and one is 
left with: 
 

( ) 0.wv kk
k

k =χ∇−ρ∑         (2.18) 
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which is the mass balance for the interfaces and gives the complement to the mass balance 
inside phases (2.16). Using (2.8) and defining: 
 

( ) ( ) IkkkkkkIk n.vw.wvm δ−ρ=χ∇−ρ≡δ&       (2.19) 
 

which is the mass gain due to phase change (evaporation or condensation) per unit volume, 
the quantity  being the mass gain per unit surface. The interfacial mass balance equation 
(2.18) is therefore: 

km&

 
0m

k
k =∑ &           (2.20) 

 
showing that there is no mass accumulation at the interfaces, a consequence of the implicit 
assumption that the interfaces are immaterial surfaces, carrying no mass. 
 

2.3. Momentum balances (Newton’s law) 
 
Proceeding in the same manner as for the mass balances, the mixture momentum balance 
reads (Kataoka, 1986): 
 

Is
k

kk
k

kk
k

kk
k

kkkk
k

kkk Fg.pvv.v
t

δ+ρχ+⎟
⎠

⎞
⎜
⎝

⎛
τχ∇+⎟

⎠

⎞
⎜
⎝

⎛
χ−∇=⎟

⎠

⎞
⎜
⎝

⎛
ρχ∇+⎟

⎠

⎞
⎜
⎝

⎛
ρχ

∂
∂ ∑∑∑∑∑  (2.21) 

 
where pk and 

k
τ  denote the pressure and the viscous stress tensor in phase k. The vectors g 

and Fs denote the gravity acceleration and the surface tension force respectively. According to 
Delhaye (1974), the surface tension force per unit interfacial surface has the following 
expression: 
 

σ∇+∇σ−= ss n.nF          (2.22) 
 

where it is not useful to precise the sense of the unit normal vector n since it appears twice in 
the first term of the RHS (Right Hand Side) of (2.22). The divergence of the unit normal 
vector ∇.n gives the total curvature, equal to twice the mean curvature (Aris, 1962), and the 
last term ∇  is the surface gradient of the surface tension coefficient: the so-called 
Marangoni effect. 

σs

 
Defining a mixture pressure p and a mixture viscous stress tensor τ  as in (2.11): 
 

∑∑ τχ≡τχ≡
k

kk
k

kk ,pp         (2.23) 

 
It is easy to see that the momentum equation in the “single fluid” formulation reads: 
 

( ) ( ) ( Isn.ng.pvv.v )
t

δσ∇−∇σ−ρ+τ∇+−∇=ρ∇+ρ
∂
∂     (2.24) 
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Except for the last term, the equation (2.24) is the same than the momentum balance for a 
single fluid, hence the name of the formulation. The last term, specific to two-phase flows, 
represents the surface tension force acting on a unit volume of the two-phase medium 
containing interfaces. 
 
Proceeding as for the mass balances, the momentum balances for phase k and for the interface 
can be separated from the mixture balance (2.21). The momentum balance for phase k is the 
classical one: 
 

( ) g.pvv.
t
v

kkkkkk
kk ρ+τ∇+−∇=ρ∇+

∂
ρ∂

      (2.25) 

 
and the momentum balance for the interface reads: 
 

σ∇+∇σ−==τ+−∑ ss
k

kkkkkk n.nFn.npvm&      (2.26) 

 

2.4. Total energy balances (first principle) 
 
According to Kataoka (1986), the total energy for the two-phase mixture is defined by: 
 

Is
k

2
k

kkk u
2

ve δ+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ρχ∑         (2.27) 

 
where ek is the specific internal energy for phase k and us is the interfacial energy per unit 
surface. The mixture total energy obeys to the following balance equation (Kataoka, 1986): 
 

IssIs
k

kk

k
kkk

k
kkk

k
kkk

k
kk

Isk
k

2
k

kkkIs
k

2
k

kkk

uw.FQ

g.vv..vp.q.

wuv
2

v
e.u

2
v

e
t

δΓ+δ+χ+

ρχ+⎟
⎠

⎞
⎜
⎝

⎛
τχ∇+⎟

⎠

⎞
⎜
⎝

⎛
χ∇−⎟

⎠

⎞
⎜
⎝

⎛
χ−∇=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
δ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ρχ∇+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
δ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ρχ

∂
∂

∑

∑∑∑∑

∑∑

  (2.28) 

 
where 

k
q  denotes the heat flux due to conduction inside phase k, Qk denotes a possible heat 

source in phase k and Γs denotes a source term of δI. According to Kataoka (1986), the local 
instantaneous IAC (Interfacial Area Concentration) obeys to the following balance: 
 

[ ] IsI
I w.

t
δΓ=δ∇+

∂
δ∂

         (2.29) 

 
Morel (2007) gives the exact expression of the source term Γs due to stretching of the 
interfaces (i.e. in the absence of break-up and coalescence): 
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w.ss ∇=Γ           (2.30) 
 

From (2.28), it is possible to separate the total energy balances for phase k and for the 
interface in the same manner as in the preceding paragraphs. The total energy balance 
equation in phase k reads: 
 

( ) ( ) kkkkkkkkk

2
k

kk

2
k

kk Qg.vv..vp.q.v
2

ve.
2

ve
t

+ρ+τ∇+∇−−∇=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ρ∇+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ρ

∂
∂  

(2.31) 
 

Using (2.29) and (2.31), the remaining of (2.28) gives the total energy balance for the 
interface: 
 

[ ]∑
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−τ−++=∇+

∂
∂

k

2
k

kkkkkkkkss
s

2
vemn.v.vpqw.Fu.w

t
u

&   (2.32) 

 
Now, defining the following additional mixture quantities: 
 

∑∑∑ χ≡χ≡χ≡
k

kk
k

kk
k

kk QQ,qq,ee       (2.33) 

 
The equation (2.28) can be rewritten in the “single fluid” formulation: 
 

( ) ( ) IssIs

Is

2

Is

2

uw.FQg.vv..vp.q.

wuv
2
ve.u

2
ve

t

δΓ+δ++ρ+τ∇+∇−−∇=

=⎥
⎦

⎤
⎢
⎣

⎡
δ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ρ∇+⎥

⎦

⎤
⎢
⎣

⎡
δ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ρ

∂
∂

    (2.34) 

 

2.5. Secondary balance equations 
 
Taking the dot product of the momentum equation (2.25) by the velocity vk gives the kinetic 
energy balance equation: 
 

( ) ( ) g.vv:v..v.pvp.v
2

v
.

t
2

v

kkkkkkkkkkk

2
k

k

2
k

k

ρ+∇τ−τ∇+∇+−∇=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ρ∇+

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ρ∂

(2.35) 

 
Subtracting the kinetic energy balance (2.35) from the total energy balance (2.31) gives the 
following internal energy balance equation: 
 

[ ] [ ] kkkkkkkkkkk v:v.pQq.ve.e
t

∇τ+∇−+−∇=ρ∇+ρ
∂
∂     (2.36) 

 
Substracting ek multiplied by the mass balance equation (2.16) from (2.36), the non 
conservative form of (2.36) is obtained: 
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kk
kkk

kkkkkk
kk

k

e.v
t

e
ˆ

Dt
eD

:withv:v.pQq.
Dt

eD

∇+
∂

∂
=

∇τ+∇−+−∇=ρ
    (2.37) 

 
The notation Dk/Dt stands for the material (or convective) derivative following the phase k in 
its motion. Using ∂ek = Cv,k*∂Tk where Cv,k and Tk denote respectively the specific heat at 
constant volume and the phase temperature, Eq. (2.37) can be rewritten for the temperature as 
the main variable: 
 

( )

kkk

kkkkkkk
kk

k,vk

Tq

:withv:v.pQT.
Dt

TDC

∇λ−=

∇τ+∇−+∇λ∇=ρ
   (2.38) 

 
where the Fourier’s law has been assumed to express the conductive heat flux qk. 
 
Defining the enthalpy by the sum of the internal energy and the energy associated to pressure 
force: 
 

k

k
kk

peh
ρ

+≡           (2.39) 

 
The internal energy (2.36) or (2.37) can be rewritten in the form of an enthalpy balance 
equation: 
 

[ ] [ ] kk
kk

kkkkkkk v:
Dt

pDQq.vh.h
t

∇τ+++−∇=ρ∇+ρ
∂
∂     (2.40) 

 
Defining the total enthalpy by the sum of the enthalpy and of the kinetic energy: 
 

2
vhH

2
k

kk +≡          (2.41) 

 
The equation for Hk can be derived simply by adding the equations (2.40) and (2.35) for the 
two forms of energy contained in the total enthalpy: 
 

[ ] [ ] ( ) g.vv..
t

pQq.vH.H
t kkkk

k
kkkkkkk ρ+τ∇+

∂
∂

++−∇=ρ∇+ρ
∂
∂    (2.42) 

 
 

 

2.5. Two-fluid formulation 
 
The equations (2.13), (2.24) and (2.34) constitute the “single fluid” or “one fluid” formulation 
for the two-phase flow. Another useful formulation is the “two-fluid” formulation where the 
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equations for the two phases are treated (or solved) independently. These equations can be 
obtained from the single phase balance equations for mass (2.16), momentum (2.25) and total 
energy (2.31) by multiplying them by the PIF χk and reintroducing χk in the derivatives. The 
mass balance of the two fluid formulation reads: 
 

( ) ( ) IkIkkkkkk
kk mn.vwv.

t
δ≡δ−ρ=ρχ∇+

∂
ρχ∂

&      (2.43) 

 
The momentum balance of the two fluid formulation reads: 
 

( ) ( ) ( ) gn..nppvmvv.
t

v
kkIkkkkIkkkkIkkkkkk

kkk ρχ+δτ+τχ∇+δ−χ∇−δ=ρχ∇+
∂
ρχ∂

& (2.44) 

 
The total energy balance of the two fluid formulation reads: 

( ) ( ) ( )

IkkkIkkkIkk

kkkkkkkkkkkkkI

2
k

kk

k

2
k

kkk

2
k

kkk

n.v.n.vpn.q

Qg.vv..vp.q.
2

v
em

v
2

ve.
2

ve
t

δτ+δ−δ−

χ+ρχ+τχ∇+χ∇−χ∇−δ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ρχ∇+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ρχ

∂
∂

& (2.45) 

 
It is easy to verify that, summing the equations (2.43), (2.44) and (2.45) on the two phases (k 
= 1 and 2) and taking into account the interfacial balances (2.20), (2.26) and (2.32) with the 
definitions (2.11), (2.23) and (2.33), the balance equations of the “single fluid” formulation 
can be retrieved. 

2.6. Example of application 1: The Rayleigh equation for a spherical 
vapour bubble 
 
We consider a single vapour bubble immersed in a liquid under the following hypotheses 
(Delhaye, 1981): 
 
(H1) no gravity 
(H2) spherical symmetry 
(H3) single component liquid 
(H4) Newtonian liquid 
(H5) Constant liquid viscosity µL 
(H6) liquid obeying Fourier’s law 
(H7) Constant liquid thermal conductivity λL 
(H8) Single component vapour 
(H9) Newtonian vapour 
(H10) Constant vapour viscosity µV 
(H11) vapour obeying Fourier’s law 
(H12) Constant vapour thermal conductivity λV 
(H13) Constant surface tension σ 
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2.6.1. Mass balance equations 
 
Due to the assumption of problem spherical symmetry (H2), the equations are written in 
spherical coordinates. Under the assumptions (H3) and (H8), the mass balance equations for 
the liquid and vapour phases (2.16) become: 
 

( )

( ) 0wr
rr
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1
t
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        (2.46) 

 
Where r is the radial distance to the bubble centre, of radius R, and wV,L are the radial 
component of the vapour and liquid velocities.  The interfacial mass balance equation (2.20) 
reads: 
 

( ) ( ) RronRwRw LILIVIVI =−ρ=−ρ &&       (2.47) 
 

Where R&  is the time rate of change of the bubble radius R and is equal to the normal 
displacement speed of the interface w.n on this simple problem. The second index I indicates 
that the values are taken at the interface. 

2.6.2. Momentum balance equations 
 
Under the assumptions (H1), (H2), (H3), (H4), (H5), (H8), (H9) and (H10), the liquid and 
vapour momentum balance equations (2.25) read, in spherical coordinates: 
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   (2.48) 

 
The interfacial momentum balance equation (2.26) reads, under the additional assumption 
(H13): 
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(2.49) 

 

2.6.3. Energy balance equations 
 
The chosen form of the energy balance equations is the temperature equation (2.38) using 
assumptions (H6) and (H11). Using also (H2), (H7) and (H12), the equation (2.38) written for 
the two phases in spherical coordinates read: 
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 (2.50) 

 
where we made the additional assumption: 
 
(H14): no heat source Qk in the bulk of the phases. 
 
The interfacial energy balance is not useful and will not be written here. 

2.6.4. Rayleigh equation 
 
In the studies of vapour bubble dynamics, a special form of the liquid momentum equation, 
the Rayleigh equation, is often used. We make two additional assumptions: 
 
(H15) The liquid is incompressible 
(H16) the vapour density is negligible with respect to the liquid density. 
 
The assumption (H15) allows to integrate directly the liquid mass balance equation (2.46)1 
which gives: 
 

( )
2L r
tAw =           (2.51) 

 
As a result, the liquid momentum equation (2.48)1 takes the following simple form, whatever 
the liquid viscosity: 
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Taking the result (2.51) into account and integrating (2.52) from R to infinity gives the 
following result: 
 

L
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=−+ ∞&&        (2.53) 

 
where the second index I indicates quantities which are taken on the bubble interface (r = 
R(t)) and the overdot denotes a time derivative. Assumption (H16) enables to simplify the 
interfacial mass balance (2.47) as , therefore Eq. (2.53) becomes: Rw LI

&≅
 

L

LLI2 ppR
2
3RR

ρ
−

=+ ∞&&&         (2.54) 

 
which is called the Rayleigh equation. 
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2.7. Example of application 2: Hadamard solution for the translation 
of a spherical inclusion in a very viscous fluid. 
 

2.7.1. Simplifying assumptions, balance equations and boundary 
conditions (problem setting) 
 
The solution presented hereafter has been derived by Hadamard (1911) and summarized by 
Cartellier (2008). It consists in the study of the translation of a very viscous droplet in a very 
viscous fluid (creeping flow). The following assumptions are necessary: 
 
(H1) the flow is stationary 
(H2) the two phases are incompressible 
(H3) creeping flow, i.e. Re << 1. 
(H4) Newtonian fluids with constant viscosities 
(H5) the spherical droplet is translating without any acceleration 
(H6) no phase change (i.e. neither evaporation nor condensation) 
(H7) the flow is assumed to be axisymetric 
(H8) Constant surface tension σ 
 
 
Under the four assumptions (H1)-(H4), the mass and momentum balance equations in each 
phase (2.16) and (2.25) reduce to: 
 

k
2

kk,m

k

vp

0v.

∇µ=∇

=∇
         (2.55) 

 
Where pm,k is a modified pressure for phase k, including the gravity term. Introducing the 
vorticity ωk = rot(vk), the second equation (2.55) can be rewritten: 
 

kkkkk,m

k

vp ω∧∇µ−=∧∇∧∇µ−=∇
ω
321

      (2.56) 

 
Taking successively the rotational and the divergence of (2.56), the pressure and the vorticity 
are harmonic quantities: 
 

{

0p

0.0

k,m
2

k
2

k
2

0
kk

=∇

=ω∇⇒ω∇−ω∇∇==ω∧∇∧∇
     (2.57) 

 
In the following, the dispersed phase (the inclusion) will be denoted by k = 1 and the 
continuous fluid surrounding this inclusion will be denoted by k = 2. 
 
Under the condition of no phase change (H6) and if we admit no slip of one phase on the 
other at the interface, the kinematical conditions on the spherical globule surface read: 
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          (2.58) 

 
Under the assumptions (H6) and (H8), the interfacial momentum balance equation (2.26) 
degenerates into: 
 

( ) n.nn.np
k

kkkk ∇σ−=τ+−∑        (2.59) 

 
Projecting (2.59) into the normal (to the interface) and tangential directions gives: 
 

nt,2nt,1

nn,2nn,121 H2pp
τ=τ

σ=τ+τ−−
        (2.60) 

 
where H is the mean curvature, equal to 1/R for a spherical surface of radius R.  
 
The boundary conditions (BC) at infinity read: 
 

∞→=
∞→−=

rpp
reUv

02

z2          (2.61) 

 
where U is the translation velocity of the globule centre. We choose to work in a reference 
frame linked to the globule. Let z be the symmetry axis (H7) and θ be the angle measured 
from the z axis.  
 

2.7.2. Determination of the velocity and pressure fields in and around the 
globule 
 
We are searching the solution under the following form: 
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Where  is called the Stokes stream function. The vorticity vector ωkψ k has only one non zero 
component ωk along the base vector eφ (H7) which reads : 
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Hence, the first equation (2.57) becomes: 
 

( ) 0E k
4 =ψ           (2.64) 

 14



 
where the operator E4 means the operator E2 applied two times. 
 
The BCs (2.61), (2.58) and (2.60) become: 
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The solution is searched in the following form: 
 

( ) ( ) θ=θψ 2
kk sinrF,r          (2.66) 

 
We obtain: 
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For the external field, the velocity remains finite when r tends to infinity, it implies A2 = 0. 
Otherwise, the first two BCs (2.65) give C2 = -U/2. For the internal field, the velocity must 
remain finite at the origin (i.e. r = 0) so we have necessarily: B1 = D1 = 0. Whence : 
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The fourth line in (2.65) gives the two conditions v1r = v2r = 0 at the interface r = R : 
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The fifth line in (2.65) gives the unique condition v1θ = v2θ at the interface r = R : 
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Finally, the last BC (2.65) (equality of tangential stresses at the interface) gives : 
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Introducing the following notation of the viscosities ratio: 
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The solution of the system of algebraic equations (2.69)-(2.71) is: 
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The stream functions and the velocities in each phase are then deduced: 
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The momentum equation (2.55)2 then allows to calculate the modified pressure field in each 
phase: 
 

( )κ+
κ+θ

µ+=
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θ

µ−′=

12
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       (2.75) 

 
The pressure value at the inclusion centre is deduced from the normal balance at the interface 
(see (2.65)6) : 
 

R
2pp 00
σ

+=′           (2.76) 

 
The surface tension σ contributes to the pressure level inside the inclusion. 
 

2.7.3. Force exerted on the globule 
 
The force exerted on the inclusion by the surrounding fluid is given by the following 
expression: 
 

{ ϕϕθθ τ+τ+τ+−=σσ= ∫ eeeepn.withdSn.F
0

r,2r,2rrr,2r222
   (2.77) 

 
By symmetry , this force has only one non zero component Fz in the direction of the relative 
velocity : 
 

( ) ϕθθ=θτ+θτ+θ−= ∫ θ ddsinRdSwithdSsincoscospF 2
r,2rr,22z   (2.78) 

 
This force, often called the drag force, includes three contributions: 
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• Pressure force (form drag): 

 

( )
κ+

κ+
πµ−=θ−= ∫ 1

3/2RU2dScospF 22p,z       (2.79) 

 
• Viscous force normal to the interface (skin drag): 

 

( )
κ+

πµ−=θτ= ∫ 1
1RU

3
8dScosF 2rr,2rr,z       (2.80) 

 
• Viscous force tangent to the interface (skin drag): 

 

( )
κ+

κ
πµ−=θτ= ∫ θθ 1

RU4dSsinF 2r,2r,z       (2.81) 

 
The sum of the three contributions (2.79)-(2.81) gives the total drag force exerted on the 
globule: 
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Where CD is the drag coefficient which is related to the drag force by the following definition: 
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If we make the ratio κ defined by (2.72) tend to infinity (the viscosity of the fluid inclusion is 
infinitely greater than the one of the surrounding fluid), we retrieve the expression of the 
Stokes drag force on a solid particle (e.g. Oesterlé, 2006): 
 

)particlesolid(
Re
24CD =         (2.84) 

 
The other limiting case is the one obtained by making κ = 0 (the viscosity of the fluid 
inclusion is nil) which corresponds approximately to the case of a clean bubble: 
 

 )bubbleclean(RU2
ˆRewith
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16CRU4F

2
D2z ν
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What is interesting is to see how the detailed results (2.79)-(2.81) degenerate in these two 
limiting cases. The comparison of the different force contributions for the solid particle on 
one hand, and for the clean bubble on the other hand, are given in the following table: 
 
Inclusion 

2

1ˆ
µ
µ

=κ  p,zF  rr,zF  θr,zF  zF  
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solid ∞  RU2 2πµ−  0 RU4 2πµ−  RU6 2πµ−  
Clean bubble 0 RU

3
4

2πµ−  RU
3
8

2πµ−  0 RU4 2πµ−  

 
This comparison illustrates the influence of the kind of boundary conditions on the inclusion 
surface. It should be noted that the pressure contribution is not identical in the two cases. The 
tangential stresses give no contribution for a clean bubble but give the two-third of the total 
drag force for a solid particle. The viscous stresses in the normal direction give a contribution 
only for the clean bubble case, which also equals the two-third of the total drag. 
 

3. Two-fluid averaged equations 
 
In this section, the averaged equations of the two-fluid model are derived. These equations are 
the average forms of the local instantaneous two-fluid equations that have been presented in 
section 2.5. The expression “two-fluid” signifies that the two phases are treated separately, in 
opposition to some simpler models that use balance equations for the mixture considered as a 
whole. Nevertheless, the two phases are not independent, since they are related through 
interfacial interaction terms which are the average forms of the terms involving δI in the local 
instantaneous equations. 
 

3.1. Averaging operator 
 
Here we define the properties of the averaging operator that will be used to link the local 
instantaneous equations to the averaged ones. The local instantaneous equations are 
sometimes called “microscopic equations”, or equations at the “microscopic level”, in 
opposition to the averaged equations called “macroscopic” ones. The averaging operator 
therefore defines a bridge between the microscopic description of the flow phenomena 
(including all the spatial and temporal details) to a simplified macroscopic description, 
characterized by a smaller number of freedom degrees, which is considerably cheaper to 
calculate by numerical means, and which is often sufficient to the engineer. From a numerical 
point of view, the microscopic level is the domain of DNS (Direct Numerical Simulation) and 
the macroscopic one is the domain of RANS (Reynolds Averaged Navier-Stokes) simulations, 
to retain classical expressions used in single-phase flow calculations. An intermediate 
simulation domain is LES (Large Eddy Simulation) which is often used in single-phase flow 
calculations, but seems difficult to use for two-phase flows in the present state of the art. 
 
There exist a lot of averaging operators used by modellers and experimentators. These 
averaging operators can be classified into three main categories: spatial, temporal and 
statistical (ensemble) averaging operators. Some composite averaging operators, resulting 
from the superimposition of several basic averaging operators, are sometimes used. All these 
operators are of different nature, each one being adapted to a certain class of problems for 
which they were invented. For example, the time averaging operator is more often used in the 
context of statistically stationary flows, even if its applicability domain is not completely 
restricted to this kind of flows. The more fundamental kind of averaging is the statistical 
averaging, which can be replaced advantageously by a time or a spatial averaging operator in 
some particular situations (stationary flows for time average, homogeneous flow for spatial 
average), invoking the ergodicity assumption. It should be kept in mind that all the averaging 
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operators do not have the same properties. Certain averaging operators, called Reynolds 
operators (Sagaut, 1998) are often used because they give the simplest form of the averaged 
equations. In what follows, we recall the basic properties of such a Reynolds operator: 
 

ψ+φ=ψ+φ          (3.1) 
 

)ctea(aa =φ=φ         (3.2) 
 

ψφ=ψφ          (3.3) 
 

t,xs
ss

=
∂
φ∂

=
∂
φ∂         (3.4) 

 
φ=φ           (3.5) 

 
φ−φ=φ′=φ′ ˆ0         (3.6) 

 
where φ and ψ denote two field quantities (i.e. quantities depending on time and space 
coordinates). The averaging operator is denoted by brackets < >. The relations (3.1) and (3.2) 
express the linearity of the averaging operator, a property which is common to all kinds of 
averaging operator. The relation (3.4) expresses that time and spatial derivatives can be 
permuted with the averaging operator without introducing any additional term. In two-phase 
flows, where discontinuous fields are encountered at the interfaces, this property is valid only 
by interpreting the fields in the sense of generalized functions (or distributions) which has 
been done in section 2. The other three relations (3.3), (3.5) and (3.6) express that an already 
averaged quantity is unaffected by a second application of the averaging operator. As a 
consequence, if the fluctuating quantity is defined as the difference between the quantity itself 
and its average (Eq. 3.6), the averaging of this fluctuating quantity gives zero. This very 
important property is specific to a Reynolds averaging operator, and is not true for example, 
in the case of a spatial averaging operator used in LES. The ensemble (or statistical) 
averaging operator has this property, and we will assume in our subsequent developments, 
that the chosen averaging operator is a Reynolds one. 
 

3.2. Primary averaged balance equations 
 
By ‘primary’, we mean the mass, momentum and total energy balance equations. Their local 
instantaneous form has been summarized in section 2.5, in the form of the two-fluid 
formulation. Hence, it is sufficient here to apply directly the averaging operator to obtain the 
primary averaged balance equations. 
 

3.2.1. Mass balance equation 
 
The average of the mass balance equation (2.43) gives: 
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Several macroscopic (averaged) quantities are then defined. The averaged fraction of presence 
of phase k, sometimes called the “void fraction” or the “phase holdup”, is defined as the 
average of the PIF, hence: 
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The (intrinsic) phase averaged density is then defined by: 
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Favre averaging is classically defined for terms or quantities weighted by mass or volumetric 
mass: 
 

k

kk

kkk

kk

kkk
k

kk

kk

kkk

kk

kkk
k

k

vv
v.g.e

ρα

ρχ
=

ρχ

ρχ
≡

ρα

φρχ
=

ρχ

φρχ
≡φ   (3.10) 

 
At the end, we also define the average mass gain per unit volume per unit time due to phase 
change by: 
 

Ikk m δ≡Γ &           (3.11) 
 

As a consequence of the preceding definitions, Eq. (3.7) can equivalently be rewritten as: 
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       (3.12) 

 
The equation (3.12) is the classical form for the mass balance equation of the two-fluid model 
(e.g. Ishii, 1975). 
 
Eq. (3.12) should be supplemented by the averaged form of the interfacial mass balance 
(2.20). Multiplying (2.20) by δI and taking the average, the following mass jump condition is 
obtained: 
 

0
k

k =Γ∑           (3.13) 

 

3.2.2. Momentum balance equation 
 
Averaging Eq. (2.44), we obtain: 
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where the second line regroups the momentum interfacial transfers. The first interfacial 
transfer Ikk vm δ&  is the exchange of momentum associated to the mass transfer by phase 
change. It is often called the “recoil force”. The two other interfacial terms are the mean 
interfacial forces due to pressure and viscous stresses. 
 
Eq. (3.14) is an exact equation and reflects directly the local instantaneous form developed in 
section 2.5. If the mass balance equation (3.12) seems to be common to all two-fluid versions 
developed by the different authors, the situation is not so simple for the momentum equation. 
Many variants can be developed from Eq. (3.14) according to the choices made by the 
different authors to define macroscopic variables. These macroscopic variables should be 
“full of physical significance” and this physical significance depends on the problem being 
studied. For example, stratified flows are completely different from dispersed flows (like 
bubbles, droplets or particulate flows). A stratified flow is a flow where the gas and liquid 
phases are superimposed continua, separated by a unique continuous interface. In a stratified 
flow, the two phases play therefore a symmetric role and the equations should reflect this 
symmetry. On the contrary, for bubbly or droplet flows, one phase (called the dispersed 
phase) is constituted from small inclusions embedded in the other phase (called the 
continuous phase). The two phases are therefore not symmetric, and this asymmetry is also 
reflected by some two-fluid models especially devoted to dispersed flows (e.g. Zhang & 
Prosperetti, 1994). 
 
In this section, we make no particular assumption on the flow configuration, and we present 
some definitions and manipulations which are proposed in quite general two-phase flow text 
books (Ishii, 1975; Drew & Passmann, 1999; Oesterlé, 2006). 
 
Defining phase averaged pressure and viscous stress tensor in a similar manner than Eq. (3.9), 
Eq. (3.14) can be rewritten: 
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Defining the fluctuating velocity around its Favre average: 
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It can be shown by using Eqs. (3.3), (3.5) and (3.6) that: 
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The Reynolds stress tensor for phase k is defined in a manner analogous to single-phase flow 
by: 
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kk

k

k
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k
vv ′′ρ−≡τ          (3.18) 

 
Now we must examine the interfacial transfer terms. The recoil force is often expressed by 
introducing a new averaged velocity weighted by phase change: 
 

ΓΓ≡δ kkIkk vvm&          (3.19) 
 

The interfacial pressure force is purely normal to the interface. This is not the case of the 
viscous force which has  normal and  tangential components according to: 
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A first form of the averaged momentum equation can be given: 
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where Mk is defined as the averaged interfacial momentum transfer: 
 

IkkIkkIkkk n.npvmM δτ+δ−δ≡ &       (3.22) 

 
Now we will follow the book from Ishii & Hibiki (2006) to decompose the interfacial transfer 
term of momentum Mk. They also define the mixture momentum source due to surface 
tension: 
 

( ) IsIsm n.nFM δσ∇+∇σ−=δ≡        (3.23) 
 

The authors introduce the surface mean values: 
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for an arbitrary function ψ defined at the interface, where aI is defined as the averaged 
interfacial area concentration. Defining interfacial-averaged pressure and viscous stresses, the 
interfacial transfer of momentum is decomposed in the following manner: 
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The first three terms in the RHS of Eq. (3.25)1 are the normal components whereas the last 
two terms are tangential components. The void fraction gradient appears due to the averaged 
form of the relation (2.8)2: 
 

Ikk n δ−=α∇          (3.26) 
 

The normal force n
kM  represents the form drag and lift force arising from the pressure 

imbalance at the interfaces. The tangential force t
kM  represents the skin drag due to the 

imbalance of shear forces. The two forces are combined to define the total generalized drag 
force: 
 

t
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n
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Introducing the averaged mean curvature of the interfaces 

I

21H  as well as the averaged 

surface tension 
I

σ , Ishii & Hibiki (2006) rewrite the mixture momentum source in the 
following manner: 
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The second term takes into account the effect of changes of the mean curvature. Neglecting 
the Marangoni effect (last term in the RHS of Eq. (3.28)), the mixture momentum source is 
approximated by: 
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The vector H

mM  is the effect of the changes of the mean curvature on the mixture momentum 
source. 
 
The averaged form of the local instantaneous interfacial balance of momentum (2.26) is: 
 

m
k

k MM =∑           (3.30) 

 
Introducing the decomposition (3.25) with (3.27) into (3.21), the following form of the 
momentum balance is obtained: 
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Subtracting from (3.31) the mass balance equation (3.12) previously multiplied by the mean 

velocity 
k

kv  and rearranging, the following non conservative form of the momentum balance 
equation is obtained: 
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where the material derivative following phase k in its mean motion: 
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∂
∂

≡ .v
tDt

D k

k
k          (3.33) 

 
 
 
 

 

3.2.3. Total energy balance equation 
 
Averaging Eq. (2.45) gives: 
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Now let us define the following macroscopic quantities (Ishii & Hibiki, 2006): 
 

• The averaged turbulent kinetic energy: 
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• The apparent internal energy which is the sum of the mean internal energy and the 
turbulent kinetic energy: 
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• The turbulent heat flux which takes into account the turbulent energy convection as 
well as the turbulent work: 
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• The interfacial supply of total energy to the kth phase, which groups all the interfacial 

transfer terms in Eq. (3.34): 
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Using these definitions, Eq. (3.34) becomes: 
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Multiplying Eq. (2.32) by δI and averaging, the following jump condition for the total energy 
is obtained: 
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where Es is the surface energy source for the mixture. This means that energy can be stored at 
or released from interfaces. 
 
Now, following the standard method of section 2.5, we will derive secondary forms of the 
energy balance equation. Dotting the momentum equation (3.21) by the mean velocity, the 
following mechanical energy equation is obtained: 
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Subtracting Eq. (3.41) from Eq. (3.39), the mean apparent internal energy equation is 
obtained: 
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The interfacial transfer in the thermal energy equation (3.42) has a special form which 
combines the mass, momentum and total energy transfer terms: 
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Now, introducing the apparent enthalpy as the sum of the mean enthalpy and the turbulent 
kinetic energy: 
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The thermal energy equation (3.42) can be rewritten for the apparent enthalpy: 
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Now we will examine in details the content of the interfacial thermal energy transfer Λk. 
Starting from the definitions (3.11), (3.22) and (3.38), we obtain the expression of Λk as a 
function of the microscopic fields: 
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Then, introducing the following macroscopic quantities: 
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where  is the interfacial average of the apparent internal energy weighted by phase change 
and  is the heat input per unit interfacial area, aI being the interfacial area per unit volume. 
Introducing the definitions (3.47) into (3.46), this becomes: 
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The mechanical term in Eq. (3.48) is a little bit more difficult to express in terms of 
macroscopic quantities. The pressure and viscous stress tensor must be decomposed into 
interfacial average values (Eq. 3.24) and fluctuating parts. At the end, the following result is 
obtained (Ishii & Hibiki, 2006): 
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where  is the turbulent work of the interfacial forces. Substituting Eq. (3.49) into Eq. 
(3.48), the macroscopic interfacial thermal energy transfer becomes: 
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In analogy with (3.44), the apparent mean enthalpy at interfaces weighted by phase change 
can be defined: 
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Then we have: 
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It is straightforward to obtain Ek from the relations for Λk, Mk and Γk, therefore we have from 
(3.25), (3.27) and (3.52) the following result: 
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Substituting these results into the total energy equation (3.39) and into the apparent thermal 
energy equation (3.45), these equations become: 
 

• Total energy equation: 
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• Apparent thermal energy equation: 
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Defining the turbulent energy source by  and the viscous dissipation term due to the mean 
velocity gradient by , thus: 
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The equation (3.55) can be rewritten equivalently into the following non conservative form: 
 

 29



( )[ ]
( ) ( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −α∇τ−+

α
−+′′+Η−ΗΓ+

+α+Φ+Φ+α++α−∇=
Η

ρα

ΓΓ
k

kkk

I

kik
kkI

k

k

kIkIkkk

k

kk
D
k

T
k

k

kk
k

T

k

k

kk
kkk

kk

vv..M
Dt

D
ppaq

Q
Dt
pDqq.

Dt
D

 (3.57) 

3.3. Averaged topological equations 
 

3.3.1. Void fraction topological equation 
 
We first average the topological equation (2.7) for the PIF. As the fraction of presence of  
phase k is defined as the average of the PIF (Eq. 3.8), the average of (2.7) gives an evolution 
equation for αk. After some simple manipulations, and using Eq. (2.19), the following 
equation is obtained: 
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It can be seen that this equation resembles, but is not identical to, the mass balance equation 
(3.12). We can make use of the local instantaneous mass balance (2.16) rewritten under the 
following form: 
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where we used the following definition of the microscopic material derivative: 
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based on the local instantaneous velocity vk, which is different from the macroscopic material 

derivative (3.33) based on the averaged velocity 
k

kv . The equation (3.58) becomes: 
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This equation can be compared to the mass balance equation (3.12) which can be rewritten: 
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It can be seen that the two equations (3.61) and (3.62) are equivalent if, and only if, the 
density of phase k remains constant, i.e. phase k is incompressible. If the density of phase k 

varies on the microscopic scale, then 
k

k

k

k vv ≠  and (3.61) and (3.62) are not equivalent. The 
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first one is an equation for the void fraction which is distinct from the mass balance equation, 
the differences coming from local compressibility variations. 
 

3.3.2. interfacial area topological equation 
 
A second topological equation is given by the local instantaneous interfacial area 
concentration (IAC) balance equation (2.29). Its average gives the following IAC balance 
equation: 
 

[ ] I
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I
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t
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        (3.63) 

 
where aI is the average IAC defined by the following relation: 
 

IIa δ≡           (3.64) 
 

The quantities 
I

w  and 
I

sΓ  are the interfacial averaged interface velocity and source term per 
unit surface. This last quantity is due to numerous physical phenomena like coalescence and 
ruptures, phase change, interfacial instabilities and so on… Nevertheless, it is not easy to 
introduce discontinuous phenomena, like coalescence and break-up, in the general context 
presented here. They will be introduced later, in a section specific to dispersed two-phase 
flows, like bubbly or droplet flows. 
 

3.4. Turbulence equations 
 
Despite the fact that it is quite difficult to define “true turbulence” in two-phase flows, 
because the fluctuations observed in the bulk phases are also strongly coupled to the erratic 
movements of interfaces, authors often follow the same “line of reasoning” to derive balance 
equations for turbulence in two-phase flows than in single-phase flows. We are concerned 
here with RANS approaches (RANS means Reynolds Averaged Navier-Stokes) which have 
nothing to see with LES (Large Eddy Simulation) dedicated to more fundamental studies. The 
different RANS approaches can be classified according to the number of balance equations 
used to calculate the averaged effect of turbulence. Typical approaches use zero, one, two or 
even more balance equations to describe turbulence, the model having the greater number of 
equations being probably the Reynolds Stress Model (RSM) which uses seven turbulence 
equations (e.g. Schiestel, 1993). Here we follow the classical (single-phase) approach to 
derive balance equations for turbulence (Schiestel, 1993), and simply extend these equations 
to two-phase flows by considering the functions in the sense of generalized functions, and 
using the tools developed in section 2. 
 
The more important mean quantity associated to turbulence is probably the Reynolds stress 
tensor which has been defined in (3.18). Adopting the notations of Schiestel (1993), we prefer 
to redefine the Reynolds stress tensor as the double velocity correlation: 
 

k

kkk
vvR ′′≡           (3.65) 
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The original stress tensor (3.18) can be retrieved by simply make

k

k

k
T

k
Rρ−≡τ . The Reynolds 

stress tensor balance equations are obtained by the following method. First of all, we derive 
the equation for the fluctuating velocity v’k which is defined by Eq. (3.16). This can be done 
by subtracting the equation for the mean velocity (3.21) from the equation for the local 
instantaneous velocity (2.25). In order to do this, we make the simplifying assumption of an 
incompressible phase k, hence here: 
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kk vvcte:assumptiongSimplifyin =⇒ρ==ρ     (3.66) 
 

Hence it is not useful, in this paragraph, to make the distinction between the Favre average 
and the phase average. Under the assumption of a constant density, Eq. (2.25) can be 
rewritten: 
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Under the same assumption, Eq. (3.21) can be rewritten: 
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Subtracting (3.68) from (3.67), the following equation is obtained: 
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where we have defined the fluctuating pressure and viscous stress tensor as in the following 
relations: 
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The second step to obtain the equation for the typical component Rk,ij is to make: 
 

( ) ( )k
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This gives: 
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Now we must take care that the phase averaging operator 
k

 cannot be simply permuted with 
the space and time derivatives, contrary to the ensemble averaging operator < > (Eq. 3.4). 
Therefore we must come back to the ensemble averaging operator to permute it with the two 
derivatives: 
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We recall that in the context of the assumption (3.66), we make no distinction between the 

Favre average 
k

 and the phase average 
k

. In this context, we can work on the different 
terms of Eq. (3.72). First we note that: 
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because of the incompressibility of phase k. 
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where the definition (3.65) has been used. Eq. (3.72) can be rewritten: 
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(3.77) 
 

Defining the interfacial Reynolds stress tensor weighted by phase change by the following 
relation: 
 

Ikj,ki,kij,kk mvvR δ′′≡Γ Γ &         (3.78) 
 

Eq. (3.77) can be rewritten: 
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The LHS of Eq. (3.79) is simply the transport term of the correlation Rk,ij by the mean 
velocity field. The different terms in the RHS have been numbered: the physical significance 
of each of them is given hereafter. (I) is due to phase change (Reynolds stress interfacial 
transfer associated to mass transfer). (II) is the divergence of the triple correlation which 
needs to be modelled. (III) are the production terms by the mean velocity gradients, they need 
no further modelling. (IV) are additional terms due to the “compressibility” of the fluctuating 
velocity field, these terms do not exist in incompressible single-phase flows, they are specific 
to two-phase flows. (V) contain the divergence of the pressure-velocity correlations as well as 
the pressure-deformation correlations. At the end, (VI) contain the molecular diffusion as well 
as the viscous dissipation terms. 
 
Another often used balance equations in turbulence models is the turbulent kinetic energy 
equation. Recalling the definition (3.35) of the turbulent kinetic energy, it can be seen that the 
trace of the Reynolds stress tensor is twice this turbulent kinetic energy: 
 

( ) kkii,k K2RtrR ==          (3.80) 
 

Therefore, the balance equation for turbulent kinetic energy can be obtained by taking half of 
the trace of the equation (3.79): 
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with the same interpretation of the different terms in the RHS of Eq. (3.81). The six equations 
(3.79) are the basis of the two-phase RSM (Reynolds Stress Model) and the equation (3.81) is 
the basis of the two-phase K-ε model. The same ε equation must be derived to complete each 
of these models. Due to its complexity, this balance equation will not be developed here (See 
e.g. Morel, 1995). 
 

4. Hybrid approach for dispersed two-phase flows 
 
When the flow is dispersed (e.g. a bubbly or a droplet flow), one of the two phases (the 
discrete or dispersed phase) is embedded into the other phase (the continuous phase) under the 
form of discrete inclusions. These inclusions can be fluid inclusions (like bubbles in a liquid 
or droplets in a gas) or solid ones (like in dusty flows for example). If the volumetric fraction 
of the dispersed phase αd is very small (αd << 1), the flow is said to be dilute, otherwise it is 
said to be dense. Due to the dissymmetry of the two phases for this kind of flows, it is 
advantageous to describe the discrete phase by tools different from those for the continuous 
phase. Up to now (sections 2-3), the two phases were treated symmetrically, without any 
assumption on their common interface configuration. Here, we take part of the existence of 
these numerous inclusions to derive the equations for the dispersed phase from population 
balances. As these population balances have no sense for the continuous phase, we are 
obliged to treat the continuous phase as in the preceding section. The two phases are therefore 
described in different manners, hence the name “hybrid” of the approach. 
 
In comparison to the symmetric two-fluid model developed in section 3, the advantages to 
proceed like that are numerous: 
 

• The equations for the dispersed phase are more readable, because they resemble to the 
equations developed for a single particle. 
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• The existing knowledge on a single particle behaviour inside a fluid can be utilized to 
help to the closure of the averaged equations (e.g. the force exerted on a particle by the 
surrounding fluid, see paragraph 2.7.3, its deformation rate…). 

• The number of freedom degrees to describe the dispersed phase can be considerably 
reduced in simple cases. For example, for spherical rigid particles, it is sufficient to 
introduce the three components of the particle translation velocity, together with the 
three components of its rotation velocity to describe its motion completely. This 
reduction of the number of freedom degrees allows to reduce the description 
complexity when it is possible and to avoid spurious effects typically encountered 
with the use of the two-fluid model. 

• Some important phenomena, like inter-particle collisions or fluid particles coalescence 
and break-up, are much easier to introduce. 

 
The basic tool is the introduction of a distribution function f(ξ;x,t) to describe the fluid (or 
solid) particles population. The vector ξ groups the so-called phase internal coordinates, 
separated from the external coordinates x and t by a semicolon (;). This vector contains all the 
variables chosen to describe the population, like the particles positions, their translational 
velocities, their size and shape, temperatures… We must distinguish between a N-particle 
description and a 1 particle description, the second one being a particular case from the first. 
Of course, the complexity of the description must be adapted to the complexity of the problem 
under study. This is one of the great advantages of the method to allow to start from a simple 
description and to progressively increase the complexity of this description by adding other 
effects, conserving the previously acquired knowledge. We start by the description of a 
population of spherical particles of identical sizes, a simple case studied independently by 
Laviéville (1997) and Kaufmann (2004). 
 

4.1. Description of a population mono-disperse in size but multi-
disperse in velocity 
 

4.1.1. Definition of variables and derivation of the main balance 
equations 
 
This description is analogous to the kinetic theory of gas molecules. We assume a dispersion 
of spherical particles having a common constant size, given by their radius a or their diameter 
d = 2a. To each particle is associated a position and velocity realization in phase coordinates. 
The averaging operator < > must be understood as an ensemble average conditioned on one 
continuous phase realization. We assume that the particle diameter is so small that flow 
around each particle can be considered as a creeping flow, so that the Stokes drag given by 
Eq. (2.84) for a solid particle or the drag (2.85) for a clean bubble can be used. This last 
simplification is only for pedagogical purpose, and will be relaxed later. 
 
The particle distribution function f(c;x,t) is defined such that f(c;x,t)d3cd3x is the probable 
number of particle centres at time t located in a volume element d3x around point x and 
having a translation velocity between c and c+dc. The rotation velocity is not considered for 
simplicity in this first description. Let us consider a field quantity ψd(c;x,t) characterizing the 
dispersed phase. It can be a scalar, a vector or a tensor. The associated averaged field is 
defined by the following relation: 
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( ) ( ) ( ) cdt,x;cft,x;ct,xn 3

dnd ∫ψ≡ψ       (4.1) 
 

where 
ndψ  is the n-weighted average of the quantity ψd(c;x,t), n(x,t) being the particle 

number density which is defined by: 
 

( ) ( ) cdt,x;cft,xn 3∫≡         (4.2) 
 

An example of quantity ψd(c;x,t) is the particle velocity itself, which average gives the mean 
particle velocity: 
 

( ) ( ) ( ) ( ) cdt,x;cfcct,xnt,xUt,xn 3
nd ∫=≡       (4.3) 

 
The product of the particle number density and the mean velocity is then given by the first 
order moment of the velocity distribution function. Other useful moments are the p-order 
centred moments: 
 

( ) ( ) ( )[ ] ( ) cdt,x;cfUc...Ucc...ct,xn 3
k,dki,dinki ∫ −−=′′     (4.4) 

 
The second order centred velocity moment is called the kinetic stress tensor and is quite 
analogous for the dispersed phase to the Reynolds stress tensor for the continuous phase (see 
section 3). 
 
It is possible to derive the equation for f in a very general manner (e.g. Achard, 1978). When 
the particle velocity is the single internal phase coordinate, this equation reads: 
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Where F is the sum of the forces exerted on the particle, including its weight. The ratio F/m is 

therefore the particle acceleration, m being the particle mass, and c
m
F  is the conditional 

average of the particle acceleration, having a particle with velocity c. The RHS of Eq. (4.5) 
comes from inter-particle collisions. Eq. (4.5) is called a Liouville-Boltzmann equation. 
Multiplying (4.5) by the quantity ψd(c;x,t) and integrating over the velocity space, the 
following Enskog general equation is deduced: 
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where  results from collisions. In what follows, we derive the equations for the zero-th, 
first and second order moments of the velocity distribution function. These three moments 
correspond to the particle number density balance equation, the particle momentum balance 
equation and the kinetic stress tensor balance equation. 

)(C dψ

 
• Particle number density balance equation: ψd = 1 

 
Making ψd = 1 in Eq. (4.6), the following particle number density balance equation is 
obtained: 
 

( ) )1(CUn.
t
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∂
∂          (4.7) 

 
Excluding particle break-up and coalescence, as well as nucleation and collapse, the RHS of 
(4.7) is zero. If there is no phase change, the particle mass m is a constant. Multiplying (4.7) 
by m and remarking that nm = αdρd, the particle mass balance equation is retrieved: 
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which is the same than (3.12) when k = d and assuming no phase change (Γk = 0). 
 

• Particle momentum balance equation: ψd = c 
 
Making ψd = c in Eq. (4.6), the following particle momentum balance equation is obtained: 
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Multiplying by the constant particle mass m and taking into account that nm = αdρd, Eq. (4.9) 
can be rewritten: 
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where we have introduced the kinetic stress tensor 

n
cc ′′  which is a particular form of Eq. 

(4.4). 
 

• Kinetic stress tensor balance equation: ψd = (ci-Ud,i(x,t)) (cj-Ud,j(x,t)) 
 
Making ψd = (ci-Ud,i(x,t)) (cj-Ud,j(x,t)) in Eq. (4.6), the following kinetic stress tensor balance 
equation is obtained: 
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or, multiplying by the constant particle mass m: 
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4.1.2. Closure of the interfacial force for creeping flows 
 
When the flow at the particle scale (microscopic scale) can be considered as a creeping flow, 
and the assumptions of the section 2.7 are globally satisfied, we can use the results of the 
section 2.7.3 to express the force F exerted by the continuous phase on the particle. Assuming 
a solid particle which is heavier than the surrounding fluid, the main forces exerted on the 
particle are its weight and the Stokes drag given by Eqs. (2.83)-(2.84). Manipulating these 
expressions, the following expression is found for the particle acceleration: 
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where  is the so-called particle relaxation time. The vector upτ  is the continuous phase 
velocity at the particle location (the so-called fluid velocity seen by the particle). It should be 
kept in mind that the result (4.13) is valid only when the particle is a solid one and the flow 
surrounding the particle can be described by the creeping flow theory, hence the particle 
Reynolds number defined by (2.82) must be much smaller than 1. Introducing the result (4.13) 
into the momentum equation (4.10) gives: 
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where we have assumed a constant particle relaxation time. The averaged velocity 

n
u  is the 

n-weighted average of the fluid velocity seen by the particles. Its modelling is quite delicate, 
and this quantity is often decomposed by introducing the following dispersion (or drift) 
velocity (e.g. Laviéville, 1997): 
 

dcn
VUu +=          (4.15) 

 
where Vd is the macroscopic dispersion velocity and Uc is the continuous mean velocity (in 
the usual sense of the two-fluid model). Hence, Eq. (4.14) can be rewritten: 
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According to Jackson (1997), the collision term appearing in the momentum balance for the 
particles can be rewritten by using the following Taylor development: 
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where 

n
s  and 

n
s  are averaged collisional stress tensors of order 2 and 3 respectively. The 

equation (4.17) is a Taylor development. For it to be valid, the successive terms in this 
development should become smaller and smaller. Therefore, assuming that the second term in 
Eq. (4.17) is negligibly small in comparison to the first, and substituting the remaining term in 
Eq. (4.16) gives: 
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We can compare Eq. (4.18) to the classical two-fluid model momentum equation (3.21) 
written for the dispersed phase (k = d). Assuming that the mean particle velocity Ud can be 

assimilated to the phase averaged velocity 
d

dv  (which is just approximately true because 
d

dv  
takes into account all the particle internal motions as well as the particle rotation, which are 
not taken into account in Ud. This illustrates the simplifications brought by the kinetic theory 
approach developed here in comparison to the two-fluid approach), we can compare the RHS 
of Eqs. (3.21) and (4.18). The average pressure and viscous stresses for the continuous phase 
are replaced by the collisional stresses for the dispersed phase. In the same manner, the 
Reynolds stress tensor for the continuous phase is replaced by the kinetic stress tensor for the 
dispersed phase. At the end, we see that an approximated form of the momentum interfacial 
transfer (valid under the assumptions retained in this paragraph) is given by: 
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The continuous phase interfacial momentum transfer term Mc is then deduced from the 
interfacial momentum balance (3.30) and an appropriate expression for the mixture 
momentum source Mm. 
 
The kinetic stress tensor obeys to the balance equation (4.12). Using Eq. (4.13), the term 
involving the interfacial force in (4.12) can be rewritten as: 
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The relation (4.20) involves the kinetic stress tensor 

njicc ′′  as well as the symmetric part of 

the fluid-particle velocity correlation tensor 
njicu ′′ . Substituting (4.20) into (4.12) gives: 
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The LHS of Eq. (4.21) is simply the transport of the kinetic stress tensor component 

njicc ′′  

by the mean dispersed phase velocity. The four terms in the RHS of Eq. (4.21) have the 
following physical significance: (I): divergence of the triple velocity correlation. The balance 
equation for the triple velocity correlation 

nkji ccc ′′′  could be derived from the Enskog general 

equation (4.6). This term is very similar to the term (II) in the RHS of the Reynolds stress 
tensor balance equation (3.79) developed in the context of the two-fluid model. The two terms 
(II) in Eq. (4.21) are production terms by the mean velocity gradients. They need no further 
modelling. They are also very similar to the production terms (III) in the RHS of Eq. (3.79). 
The term (III) in the RHS of Eq. (4.21) represents the interaction with the turbulent motion of 
the continuous phase. The last term (IV) is due to inter-particle collisions. 
 

4.2. Description of a population multi-disperse in size (and velocity) 
 
In this section, a second internal phase coordinate, the particle diameter d, is introduced. The 
fluid or solid particles are assumed to retain the spherical shape, but their diameter varies 
from one particle to another one, and can also vary along one particle’s trajectory. The 
particle distribution function f(d,c;x,t) is now defined such that f(d,c;x,t)δdδ3cδ3x is the 
probable number of particle centres at time t located in a volume element δ3x around point x, 
having a diameter between d and d + δd and having a translation velocity between c and c+δc. 
The Liouville-Bolztmann equation (4.5) is generalized into the following equation: 
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The n-weighted average quantity (4.1) is simply generalized into the following definition: 
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where δΩ is an abbreviated notation for the internal phase space element . When 
particles have different sizes, their masses are also different, and one has advantage to 
introduce the following Favre (or mass weighted) average for the dispersed phase: 

cd 3δδ
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where α and ρ are related to the dispersed phase without ambiguity on the notation, since the 
dispersed phase is the only one considered here. The particle mass m is given by: 
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due to the spherical particles assumption. 
 
Multiplying Eq. (4.22) by mψ and integrating the resulting equation over the internal phase 
space, the following equation is obtained: 
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Where c,d
Dt
Dcj  is the jth component of the particle acceleration, it is given by: 
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For geometrical moments (quantities not weighted by the particle mass), an equation 
analogous to Eq. (4.26) can be obtained by multiplying Eq. (4.22) by ψ (instead of mψ) then 
integrating. This gives: 
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4.2.1. Mass and momentum balance equations 
 
In order to derive the mass and momentum balance equations for the dispersed phase, one 
must first derive expressions for the Lagrangian derivatives of the particle diameter Dd/Dt and 
velocity Dc/Dt appearing in Eqs. (4.26) and (4.28). To fix the ideas, we will assume that the 
considered particles are gas bubbles in a continuous liquid. The first derivative represents the 
diameter variation measured along the bubble path. This size variation is due to the gas 
compressibility on one hand, and on the phase change (vaporization or condensation) on the 
other hand. The bubble mass variation Dm/Dt is only due to phase change, hence we can 
write: 
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where m& is defined as the bubble mass gain per unit surface per unit time due to phase 
change. m&  is the mean value of (2.19) over the bubble surface. The Lagrangian derivative 
D/Dt being taken at the bubble velocity c, it is easy to deduce from (4.29): 
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For the sake of generality, we will also extend the interaction force model for bubbles in 
liquid with any value of the bubble Reynolds number.  The study of the forces exerted on a 
bubble by the surrounding liquid is a quite difficult task. According to Minier & Peirano 
(2001), a general form for the bubble momentum equation can be proposed which retains 
drag, pressure gradient, added mass and gravity forces (see also Maxey & Riley, 1983; 
Gatignol, 1983). Another important force called the lift force (Auton, 1987) is missing in the 
description of Minier & Peirano (2001), but for our pedagogical purpose, it is sufficient to 
start from the work of Minier & Peirano (2001). The momentum balance equation of a single 
bubble reads: 
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Four forces are taken into account in the RHS of Eq. (4.31), these are the bubble weight, the 
generalized Archimede’s force, the drag force and the added mass force. The vector field u is 
the liquid velocity seen by the bubble (the so-called unperturbed velocity). The drag force is a 
generalized expression of the force already seen for creeping flows (section 2.7.3) and 
involves a drag coefficient CD which needs to be modelled as a function of the bubble 
diameter, bubble Reynolds number… Empirical expressions for CD can be found in Ishii 
(1990). The last force, the added mass force, is proportional to the liquid mass displaced by 
the bubble immersion (ρc denoting the continuous phase density, i.e. the liquid density). This 
force is a brake to the bubble acceleration relatively to the surrounding liquid. The added 
mass coefficient CA essentially depends on the bubble shape. For spherical bubbles, it is equal 
to one half (CA = ½). Dividing Eq. (4.31) by the bubble mass and regrouping the terms 
proportional to the bubble acceleration in the LHS gives the following equation: 
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where τp is a bubble relaxation time analogous to the one defined in Eq. (4.13) for Stokes 
drag, and is given here as a function of the drag coefficient: 
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Introducing the definitions of the following coefficients: 
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The following final form of the bubble acceleration is obtained: 
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Now we can derive the averaged mass and momentum balance equations for the bubble 
swarm. Making ψ = 1 in Eq. (4.26) gives: 
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where we put  = 0 because the bubble mass is a collisional invariant. Introducing (4.30) 
into (4.36) and simplifying yields: 
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which is analogous to the mass balance equation (3.12) obtained in the context of the two-
fluid model. 
 
Making ψ = c in Eq. (4.26) gives: 
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First substituting (4.30) into (4.38) and simplifying gives: 
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The first term in the RHS is the bubble acceleration term, the bubble acceleration being given 
by Eq. (4.35). The second term in the RHS is the averaged recoil force and the last term is the 
collision term which can be rewritten as the divergence of a tensor (see Eq. 4.17). Defining an 
average dispersed velocity weighted by phase change: 
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and developing the average of the tensorial product of velocities in the LHS of (4.39) as the 
product of the averaged velocities plus the average of the product of fluctuating velocities, as 
it has been done in sections 3.2.2 and 4.1.1, Eq. (4.39) becomes: 
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Introducing Eq. (4.35) into the last term of (4.41), we find: 
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(4.42) 
 

The momentum balance (4.42) is the generalized form of (4.18) is the case of multi-size 
bubbles and including phase change and the added-mass effect. Its use needs further 
modelling. 

4.2.2. Geometrical moments balance equations 
 
Defining the pth order moment of the diameter distribution function by the following relation: 
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The balance equation for the moment Sp is obtained by making ψ = dp in the general equation 
(4.28). The result is: 
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Several useful equations can be derived from (4.44) by taking different values for p. It is clear 
from Eq. (4.43) that the zeroth order moment S0 corresponds to the bubble number density n. 
The void fraction α is proportional to the third order moment (α = πS3/6) as it can be seen by 
making ψd = 1 in Eq. (4.24). In the present context of the kinetic theory, the interfacial area 

 46



concentration aI (Eq. 3.64) is proportional to the second order moment (aI = πS2). We can also 
define an infinite number of mean bubble diameters by the following relation: 
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The mathematical form for the bubble diameter distribution function can then be presumed to 
close the modelling of the bubble diameters. For example, Kamp et al. (2001) choose to 
model the marginal distribution function f(d;x,t) by a log-normal law: 
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where d00 is the median diameter and σ̂  is a width parameter. These two parameters depend 
on the position x and time t and, together with n, completely define the bubble diameter 
distribution function at these position and time. Their (exact) closure needs to know the void 
fraction α together with the two particular moments S1 and S2 through the relations: 
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Hence one needs to calculate S1 and S2 by using their balance equations: 
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The equations (4.48) can be solved numerically when all the terms I, II, III and IV have been 
modelled by appropriate closure laws. These terms correspond to (I) transport of the moment 
by the mean and fluctuating velocities, (II) gas compressibility, (III) phase change and (IV) 
coalescence, breakup, nucleation and collapse. The modelling of all these effects is a complex 
task that will not be developed in this introduction to two-phase flows. 
 
Of course, the expression (4.46) for the bubble diameter distribution function is only one 
candidate. Other expressions, more or less complex, have been proposed in the literature to 
model the spectrum of the bubble diameters. 
 

5. Various special cases 
 

5.1. Terminal velocity 
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Due to the buoyancy (Archimede) force, the relative bubble motion in a liquid is essentially 
upwards (bubble rising velocity). The terminal velocity is defined as the particular bubble 
rising velocity at equilibrium between the drag force and the Archimede force, i.e. when all 
the other forces have cessed to act on the bubble. This is a very important notion since it 
allows obtaining the bubble drag coefficient by measuring the terminal velocity which is 
accessible by visual observation. The link between the drag coefficient and the terminal 
velocity is simply obtained by equalizing the drag force and the net buoyancy force (the 
Archimede force together with the bubble weight). For a single (isolated) bubble in a liquid, 
this gives (by simplifying Eq. 4.31): 
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where the index ∞  recalls that the bubble is alone in a infinite liquid medium. The terminal 
velocity can be calculated directly from (5.1) if the drag coefficient is known: 
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For a very small bubble, the creeping flow assumption can be done (section 2.7.3), and the 
drag coefficient is given by Eq. (2.85). Substitution of (2.85) into (5.2) gives the value of the 
terminal velocity of a clean bubble in creeping flow: 
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The relations (5.1)-(5.3) have been obtained for a single bubble case. Now we will search an 
equivalent notion for a bubbly flow with a large number of bubbles starting from the two fluid 
model momentum equations (3.32). We assume that the two phases do not accelerate and that 
the molecular and Reynolds stress tensors can be neglected. We also assume no phase change. 
Our last assumption is to assume that all the different average pressures appearing in Eq. 
(3.32) are equal to a single average pressure p, an assumption commonly used in two-fluid 
codes. Under these assumptions, the equations (3.32) written for the two phases degenerate 
into the following ones: 
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We can eliminate the mean pressure gradient between the two equations (5.4) by multiplying 
the first one by αL, the second one by αG and then subtracting. This yield: 
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Neglecting the differences between Mik and Mk (which is coherent with the assumptions 
previously made) and neglecting the momentum interfacial source Mm (i.e. neglecting surface 
tension), we can write MiG = - MiL = MG hence: 
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The LHS of Eq. (5.6) contains the buoyancy forces. The RHS contains the interfacial forces 
(drag, added mass…). Considering that the drag force is the only one to act on each bubble, 
because we are searching for the average terminal velocity, the RHS of (5.6) must be replaced 
by the average drag force per unit volume of the two-phase mixture. This averaged drag force 
is given by the equation (4.19) together with the equation (4.33). Neglecting the dispersion 
velocity Vd and replacing Ud – Uc = UG – UL by the mean terminal velocity VT, the equation 
(5.6) becomes: 
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where all the bubbles are assumed to have the same diameter d. The mean terminal velocity 
can be obtained directly from (5.7): 
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The comparison of the two expressions (5.2) and (5.8) of the terminal velocity shows the 
appearance of a factor αL

1/2 in the mean terminal velocity, which was not appear in the 
terminal velocity of a single bubble. First it should be remarked that in the case of an isolated 
bubble in a infinite liquid medium, the liquid fraction of presence αL tends to 1 hence the 
difference between (5.2) and (5.8) in the single bubble case is negligible. For a bubble swarm, 
it should be remarked that the Archimede force exerted on a given bubble comes from the 
bubbly mixture surrounding the considered bubble and not from the liquid alone. Due to the 
presence of the other bubbles, the bubbly mixture is lighter than the liquid as it is 
characterized by the following density: 
 

LLGGM ρα+ρα≡ρ          (5.9) 
 

which is the averaged form of the first equation (2.11). Replacing ρL in the LHS of (5.1) by 
the mixture density (5.9), the result (5.8) is retrieved in place of (5.2), showing the complete 
compatibility between the two fluid model and a balance of forces on a given bubble, at least 
in the simple conditions studied here. 
 

6. The example of the NEPTUNE_CFD code 
 
In this section, we give the example of the NEPTUNE_CFD code developed by EDF and 
CEA for the numerical studies of two-phase flows in simple as well as in complex geometries. 
This code uses a generalized two-fluid model, generalized meaning that it can consider more 
than two phases. However, for the sake of simplicity, we will consider only the case of two 
phases here. Nowadays, this code has essentially three types of applications: gas-solid flows 
(solid particles dispersed in a continuous gas phase), and two types of gas-liquid flows: 
stratified flows and boiling bubbly flows. In order to fix the ideas, we will consider only the 
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last application (boiling bubbly flows). The basic set of equations solved to simulate such a 
flow is a six-fold one. It contains: 
 

• Two mass balance equations 
• Two momentum balance equations 
• Two energy balance equations in the form of total enthalpy balance equations 

 
This basic set of equations is compulsory to calculate boiling bubbly flows. To these six 
equations, auxiliary balance equations can be added. These additional balance equations are 
mainly of two types: 
 

• Turbulence equations used to predict the turbulence existing in each phase 
• Geometrical moments balance equations used to predict the average topology of the 

bubble swarm. 
 
In what follows, we describe each of these equations in their “simplified” version used in the 
code, together with the main assumptions in order to obtain these simplified equations from 
the exact balance equations developed in the preceding sections. 
 

6.1. The mass balance equations in the NEPTUNE_CFD code 
 
The mass balance equations are given by the equation (3.12) together with the jump condition 
(3.13). The RHS of this equation is due to phase change (vaporization or condensation). The 
only additional precision we must give is that this RHS is split into two different 
contributions. The first contribution is the phase change through the surfaces of the already 
existing bubbles. The second contribution is the nucleation of new bubbles. Nucleation can 
classically be divided into wall nucleation (heterogeneous nucleation) and nucleation in the 
liquid bulk (homogeneous nucleation). Here, only the heterogeneous nucleation is considered 
and modelled. Therefore, the equation (3.12) is rewritten in the following form: 
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where  is the part of Γk associated to phase change other than nucleation and  is the 
nucleation part. The part  can represent vaporization or condensation but the nucleation 
part  only corresponds to vaporization. Obviously, each part of Γk verifies the relation 
(3.13) independently. 
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6.2. The momentum balance equations in the NEPTUNE_CFD code 
 
The momentum balance equations in the NEPTUNE_CFD code are based on the equation 
(3.32) simplified by some additional assumptions. These assumptions are the following ones: 
 
(H1): No distinction is made between the different averaged pressures. All the averaged 
pressures appearing in Eq. (3.32) are assumed to be identical to a unique mean pressure p. 
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(H2): No distinction is made between the two averaged velocities 
k

kk vandvΓ . 
(H3): The last term of Eq. (3.32) is neglected. 
 
Under the assumptions (H1)-(H3), Eq. (3.32) reduces to: 
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The last term of Eq. (6.2) has been added to take into account special physics, like for 
example the centrifugal force when the flow domain is not Galilean. Now we must give the 
closure relations for the averaged viscous stress tensor, the Reynolds stress tensor and the 
interfacial momentum transfer. Assuming that each phase is a Newtonian fluid, the averaged 
viscous stress tensor can be obtained by properly averaging the closure relation for the local 
instantaneous (microscopic) viscous stress tensor. This has been done by Ishii (1975) and the 
result is: 
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where the following assumption has been made: 
 
(H4): the dynamic viscosity µk is a constant. 
 
If we neglect also the fluctuations of the density ρk, then there is no distinction between the 

Favre average velocity 
k

kv  and the phase average velocity 
k

kv . Therefore, under the 
following additional assumption: 
 
(H5): the density of phase k does not fluctuate (i.e. it is equal to its average value) 
 
The expression for the averaged viscous stress tensor (6.3) can be simplified: 
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The terms involving the gradient of the mean velocity are called “bulk deformation tensor” by 
Ishii (1975) and the additional terms involving the fluctuating velocities together with the 
interfaces normal and function of presence are called “interfacial extra deformation tensor” by 
this author. In the NEPTUNE_CFD code, we make the following additional assumption: 
 
(H6): The interfacial extra deformation tensor is neglected 

 51



 
and the averaged viscous stress tensor reduces to: 
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Concerning the Reynolds stress tensor T

k
τ , essentially two modelling approaches are available 

in the NEPTUNE_CFD code for a continuous phase like the liquid in a bubbly flow. The 
Reynolds stress tensor can be calculated by solving 6 additional scalar equations for its 
independent components, like the equations (3.79). We recall that the Reynolds stress tensor 
is linked to the double velocity correlation tensor (3.65) by the following definition relation: 
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The other method is to make the classical Boussinesq assumption of a turbulent eddy 
viscosity. Using this assumption, the Reynolds stress tensor is modelled by analogy to the 
viscous stress tensor by the following relation: 
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where  is the turbulent eddy viscosity and Kk is the turbulent kinetic energy defined in Eq. 
(3.35). The closure of these last two quantities will be described in section 6.4. 

T
kµ

 
Other models are available for the turbulence of the dispersed phase, characterized by the 
kinetic stress tensor introduced in section 4. The most sophisticated models are those based on 
the kinetic stress tensor balance equation (4.21) but some simpler models, like the algebraic 
Tchen model (Oesterlé, 2006), can also be used. These models are essentially devoted to 
dusty flows (gas-solid flows) and not to the boiling bubbly flows described here, therefore we 
won’t describe these models in more details. 
 
Now we must describe closure laws for the interfacial momentum transfer term Mik. Due to 
our assumptions (H1) and (H3), there is no reason to make a distinction between Mik and Mk 
(see Eqs. 3.25 and 3.27). Now we will make the following additional assumption: 
 
(H7): the surface tension is not considered 
 
Under this assumption, Eq. (3.30) shows that the gas side interfacial momentum transfer term 
MG is the opposite of the liquid side interfacial momentum transfer term ML. It has been 
shown in section 4.1.1 that this term can be obtained by dividing the sum of the interfacial 
forces exerted on a bubble by the bubble mass and then averaging and multiplying by the 
product αdρd (Eq. 4.10): 
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where the index d denotes the dispersed phase. The quantity F is the sum of the different 
forces exerted on a bubble by the surrounding liquid. Classical expressions for these forces 
can be found in Eq. (4.31). Additional forces like the lift force (Auton, 1987; Tomiyama, 
1998) or a wall force (Antal et al., 1991) can also be added. The averaging of all these forces 
starting from (6.8) is a quite difficult task because all these forces have complicated non linear 
expressions. Here we will not enter into the details of all the approximations made during this 
averaging operation. Instead, we simply present the simpler model we use to simulate bubbly 
flows. In this simple model, the interfacial momentum transfer is the sum of five forces per 
unit volume of mixture: 
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where the five terms in the RHS of Eq. (6.9) denote the averaged drag, added mass, lift, 
turbulent dispersion and wall forces respectively. The drag force is modelled according to: 
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In this equation, aI is the interfacial area concentration (IAC) which has been defined by Eq. 
(3.64) in the context of the classical two-fluid model and which is approximately equal to the 
product πS2, S2 being the second order moment of the bubble diameter distribution function 
(see section 4.2.2). This is a fundamental quantity since it represents the interfacial area 
available for all the exchanges between phases (mass, momentum and energy). Its modelling 
for the case of bubbly flows is the object of section 6.5. The drag coefficient CD is essentially 
empirical and an abundant literature exists on its modelling. The added mass force is given by 
the following closure relation: 
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where CA is the added mass coefficient (equal to ½ in the case of spherical bubbles) and the 
factor  has been proposed by Zuber (1964) to take into account the influence of the 
presence of the other bubbles. It is modelled according to: 

( GE α )
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         (6.12) 

 
The factor (6.12) is always greater than 1, therefore the average added mass force on the mean 
bubble in a bubble swarm is more important than the same force in the case where the bubble 
is alone in the flow, according to Zuber’s proposition. 
 
The lift force has been calculated theoretically by Auton (1987) on a spherical particle 
immersed in a weakly rotational flow. The averaged expression of this force used in the 
NEPTUNE_CFD code is: 
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where CL is the lift coefficient which is equal to ½ in the theoretical calculation from Auton 
(1987). In real flows, the lift coefficient varies with the bubble Reynolds number, bubble 
shape… and can even changes its sign. Tomiyama (1998) gives a non dimensional 
experimental correlation for the lift coefficient as a function of the bubble Reynolds and 
Eotvos numbers. 
 
The fourth force is the turbulent dispersion force which has a statistical origin. By statistical, 
we mean that this force has no equivalent on a single bubble in a quiescent liquid, but comes 
from the averaging operation which is necessary to pass from the microscopic forces on a 
given bubble to the macroscopic forces per unit volume of two-phase mixture (Eq. 6.8). All 
the microscopic forces have complicated non linear expressions and their average introduces 
some additional terms like the dispersion velocity Vd which has been enlighten by averaging 
the drag force (paragraph 4.1.2). In our simpler model, all these averaged effects coming from 
non linearities are assumed to be grouped in a single additional force which is called turbulent 
dispersion force. Several models have been proposed in the literature for this bubble 
dispersion effect, the simplest having the following mathematical expression: 
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where CTD is an adjustable coefficient. A modelling of the coefficient CTD is given by Krepper 
et al. (2006). 
 

6.3. The energy balance equations in the NEPTUNE_CFD code 
 
The NEPTUNE_CFD code uses simplified versions of the thermal energy equation (3.57) and 
of the total energy jump condition (3.40). Assuming that the heat transfer and phase changes 
dominate the energy exchanges, the terms arisen from the mechanical effects can be 
neglected. Under this condition, Eq. (3.57) can be reduced to (Ishii & Hibiki, 2006): 
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Ishii & Hibiki (2006) also propose to simplify the total energy jump condition (3.40) by 
making the following assumptions. The interfacial energy source Es can be neglected with 
respect to the large energy exchanges that involve the latent heat at the changing of phases, 
therefore Eq. (3.40) simplifies to: 
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The expression (3.53) for Ek needs to be completed by giving constitutive equations for the 
difference between the mean velocity and the interfacial average velocity weighted by phase 
change, the turbulent kinetic energies and the interfacial turbulent work. As in two-phase 
flows with phase changes, the orders of magnitude of these terms compared to the thermal 
terms is relatively small, these authors assume: 
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Then Eq. (3.53) reduces to: 
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And the thermal energy transfer (3.52) can be approximated by: 
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Then, Eq. (6.16) becomes: 
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For relatively low speed flow, all the mechanical terms in Eq. (6.20) can be neglected and this 
equation becomes: 
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In the NEPTUNE_CFD code, the interfacial heat flux per unit volume per unit time IkIaq ′′  is 
denoted by . The mass production rate by phase change is obtained by the relation (6.21): kΠ′
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The average molecular flux 

k

k
q  can be obtained by averaging the following expression valid 

for a fluid obeying Fourier’s law: 
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where we made the following assumption: 
 
(H11): the thermal conductivity λk is constant or does not fluctuate. 
 
The average molecular flux 

k

k
q  contains two terms: one proportional to the gradient of the 

bulk averaged temperature, and the other involving fluctuating temperature at interfaces. The 
NEPTUNE_CFD code only retains the first of the two terms in (6.23). However the 
modelling of the second term could be easy (Ishii & Hibiki, 2006). Assuming that the 
microscopic temperature Tk at interfaces is given by the saturation temperature Tsat(p) and that 
this saturation temperature does not fluctuate (this is the case if it is calculated directly in 
function of the mean pressure), then the second equation (6.23) can be rewritten 
approximately: 
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(H12): the second term in the RHS of (6.24) is not retained. 
 
The turbulent heat flux T

k
q  is modelled by analogy to Fourier’s law for the molecular 

conduction: 
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where  is a turbulent conductivity linked to the turbulent eddy viscosity  by the 
introduction of a turbulent Prandtl number . 
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At the end, the interfacial heat transfers between each phase and the interfaces are modelled 
according to: 
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where Nuk is a Nusselt number which must be modelled according to the phase considered 
and to the situation encountered (overheated or subcooled liquid…). The quantity d in the 
denominator of (6.26) is a mean bubble diameter. The modelling of bubble diameters and 
interfacial area concentration aI are postponed to section 6.5. 
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6.4. The turbulence balance equations in the NEPTUNE_CFD code 
 
Two major approaches have been developed in the NEPTUNE_CFD code to model the 
turbulence of a continuous phase like the liquid phase of a bubbly flow. The earlier approach 
which has been developed is the K-ε approach which is based on a balance equation for the 
turbulent kinetic energy (Eq. 3.81) and a second balance equation for the turbulent dissipation 
rate εk. A more recent approach is the RSM approach which solves directly the balance 
equations for the six Reynolds stress components (Eq. 3.79), thus does not need to do a 
modelling assumption on the Reynolds stress tensor closure, like the Boussinesq hypothesis 
(6.7). The equations (3.79) are also completed by an additional equation for the turbulent 
dissipation rate. Due to its extreme complexity, this last equation has not been presented here. 
The interested reader can find the derivation of the exact equation for εk in Morel (1995). 
 
Here we only present the closure of the K-ε model as it is used in the NEPTUNE_CFD code 
for bubbly flow studies. The Reynolds stress tensor components are determined by the closure 
relation (6.7) together with the following closure relation for the turbulent eddy viscosity: 
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Two additional balance equations are then written for the turbulent kinetic energy Kk and its 
dissipation rate εk. The turbulent kinetic energy balance equation has a slightly different form 
from Eq. (3.81). After some manipulations, Eq. (3.81) can be rewritten: 
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with the following interpretation of the eight terms in the RHS of Eq. (6.28): 
 
(I) is the interfacial transfer of turbulent kinetic energy associated to the mass transfer by 
phase change, its modelling needs to give an expression for . (II) is the triple velocity 
correlation, (III) is the phase viscous stress – velocity correlation, (IV) is the phase pressure 
velocity correlation. (V) is the production term by the mean velocity gradient which needs no 
further modelling. (VI) and (VIII) are the interfacial pressure-velocity and viscous stress – 
velocity correlations. The last term (VII) is the turbulent dissipation rate by viscous effect: 
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In fact we do not write an equation for the turbulent dissipation rate (6.29) but an equation for 
the pseudo turbulent dissipation rate (Schiestel, 1993) which is approximately equal. The 
pseudo dissipation rate is defined by: 
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In what follows, we give a first proposition of closures of the different unknown terms 
appearing in Eq. (6.28) which can be used in bubbly flow studies (Morel, 1997). The sum of 
the three terms (II), (III) and (IV) intervenes in a divergence, therefore making transport of the 
turbulent kinetic energy without altering it. We choose to model the three terms (II), (III) and 
(IV) as a whole by introducing a diffusive flux proportional to the gradient of the turbulent 
kinetic energy: 
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The two terms (VI) and (VIII) are interfacial terms corresponding to the turbulent work of the 
fluctuating pressure and viscous stresses. We model these two terms collectively by the power 
developed by the averaged drag in the mean relative velocity: 
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This power corresponds to the additional turbulent kinetic energy produced in the wakes of 
the bubbles. This wake energy comes from the gravitational potential energy lost by the 
bubbles during their rise in the surrounding heavier liquid. At the end, we make the following 
assumption: 
 
(H14): the interfacial average turbulent kinetic energy weighted by phase change  is not 
different from the mean turbulent kinetic energy Kk: 
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Considering the models (6.31)-(6.33), the modelled equation corresponding to (6.28) reads: 
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Or, in non conservative form: 
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where  is the additional production due to the second phase and modelled by (6.32). It 
should be noted that in bubbly flows, the equation (6.35) is only used in the liquid phase (k = 
L). The turbulent dissipation rate balance equation resembles to the equation (6.35). It reads: 
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The last term  being the interfacial production term of εk which is closed by the following 
relation: 
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6.5. The geometrical moments balance equations in the 
NEPTUNE_CFD code 
 
The geometrical balance equations used by the NEPTUNE_CFD code are particular and 
simplified versions of the exact equation (4.44). These geometrical balance equations allow to 
close the bubble diameter distribution function, hence restoring an average information on the 
bubbles mean topology. Several approaches have been tempted, according to different 
presumed mathematical expressions of the bubble diameter distribution function. One of them 
is the log-normal law which has been presented in section 4.2.2 (Eqs. 4.46 and 4.47). One 
simpler approach that has been used by many authors is the single size approach where the 
bubble diameter distribution function is assumed to be given by a Dirac distribution peaked at 
the Sauter mean diameter d32 (all the bubbles are assumed to have the same diameter d32 
which varies in time and space). By definition, this Sauter mean diameter is given by: 
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which is a particular case of the general definition (4.45). Hence, in the simplest approach 
based on d32, it is sufficient to write an additional balance equation for the interfacial area 
concentration (IAC), the void fraction αG being part of the solution of the two-fluid model. 
The IAC is also involved in the modelling of the drag force (Eq. 6.10) as well as in the 
modelling of the interfacial heat transfers (Eq. 6.26). Hence, due to its particular importance, 
we will develop here the equation for the IAC. As the interfacial area of a single bubble 
having a diameter d is given by πd2, the IAC is given by the following relation: 
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Hence it is equivalent to write an equation for S2 or for aI, the last one being obtained by 
multiplying the first by a factor π. Multiplying Eq. (4.48)2 by π gives: 
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In this equation c denotes the velocity of a bubble having a diameter d. We can decompose 
this velocity into the mean gas velocity and a fluctuating velocity: 
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where c ′′  is the deviation between the particular bubble velocity and the mean velocity of the 
bubbles swarm. Introducing Eq. (6.41) into Eq. (6.40) yields: 
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(6.42) 
 

In our present state of the art, the two terms involving c ′′  are neglected in the 
NEPTUNE_CFD code. Replacing the gas density ρ by its averaged value in Eq. (6.42) yields: 
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Using the gas mass balance equation (3.12), the equation (6.43) can be rewritten equivalently: 
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The RHS of Eq. (6.44) contains three types of terms. The first one is called the gas expansion 
term (Ishii & Hibiki, 2006) and needs no further modelling. The two following terms are due 
to phase change and need further modelling. The last collision term includes coalescence and 
break-up of bubbles which also need to be modelled. In the simplest case where all the 
bubbles are assumed to have the Sauter mean diameter d32, the phase change terms in Eq. 
(6.44) cancel together: 
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where the definition (4.37) of ΓG has been used. In NEPTUNE_CFD code, we prefer to use 
Eq. (6.43) where the phase change term is decomposed into a wall nucleation part and another 
part due to phase change through the surfaces of the already existing bubbles, as we have 
done in the mass balance equation (6.1). Hence, Eq. (6.43) becomes: 
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where  are the heat flux densities which must be modelled in accordance to (6.26), 

 is the latent heat of vaporisation and  is the gas mass production by newly nucleated 
bubbles at the detachment diameter dd. 
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