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1 Data processing procedure

1.1 Mass rates measurements

The mass rate of gas is expressed in a volumetric unit: NL/min. However it is a true
mass rate in kg/s. The conversion is done by using the value of the gas density ρG0 in the
following reference state,

• Pressure, p0: 1 atm, ≡1.01325 bar

• Temperature, T0: 0oC≡ 273.15 K.

• for air ρG0 = 1.2928 kg/m3

as a result, the mass rate is given by,

MG[kg/s] = MG[Nl/min]ρG0
10−3

60
. (1)

The density of air is assumed to follow the perfect gas relation,

ρG = ρG0
pT0

p0T
, (2)

as a result, the volumetric flow rate of gas is given by,

QG[m3/s] ,
MG

ρG
= MG[Nl/min]

ρG0

ρG

10−3

60
= MG[Nl/min]

p0T

pT0

10−3

60
(3)

The evaluation of the volumetric flow rate requires the knowledge of pressure and
temperature.

1.2 Superficial velocity

By definition, the superficial velocity is the ratio of the volumetric flow rate to the cross
sectional area. The pipe diameter is 49 mm. The area of its cross section is given by,

A = π
D2

4
= 18.857 cm2 (4)

The liquid flow rate is given in l/min. The liquid superficial velocity is given by,

JL ,
QL
A

=
QL[l/min] 10−3

60 18.857 10−4
. (5)

If we express the superficial velocity in cm/s we get finally,

JL[cm/s] =
QL[l/min] 10−1

60 18.857 10−4
= 0.8838QL[l/min] (6)

The same calculation for the gas provides,

JG[cm/s] =
MG[Nl/min] 10−1

60 18.857 10−4

p0T

pT0
= 0.8838MG[Nl/min]

p0T

pT0
(7)

Calculating the superficial velocity requires calculating the pressure at the loca-
tion of the NMR measurement, see figure 1.
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Figure 1: Schematic of the test section showing the location of the pressure taps, the pressure transducer
and measuring section.

1.3 Absolute pressure calculation

We will assume that the flow is fully developed. The pressure distribution is therefore
linear with the elevation. By considering that z is oriented against the gravity direction,
and that pressure always decreases with elevation as well as in the flow direction, ps2 must
be less than ps1 and,

p(z) =
ps1(z2 − z) + ps2(z − z1)

z2 − z1
(8)

where psk is the static pressure at location k. The static pressure is related to the measured
pressure by,

psk = pk − ρLg(zk − z0) (9)

where the last term is the mere contribution of the the liquid weight in the piping con-
necting the pressure tap to the pressure transducer. By introducing this last relation into
(8), one has,

p(zm) = 0.1527 p1 + 0.8473 p2 − 0.2487 [bar] (10)

where the elevations shown in figure 1 have been used.

1.4 Void fraction calculation: RG3

A momentum balance between section 1 and 2, projected along the vertical upward direc-
tion reads,

A(ps1 − ps2)−Aρmg(z2 − z1)− PτW = 0 (11)
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where τW is the friction stress at the wall and P = πD is the wetted perimeter of the wall.
By introducing the frictional pressure drop, ∆pF = 4/DτW , one gets,

ρm =
ps1 − ps2 −∆pF

gH
≈ (1−RG2)ρL (12)

The frictional pressure drop is estimated via the homogenous model and the Blasius
single-phase pressure drop model,

Re =
GD

µ
, CF = 0, 079 Re−0,25, τW =

1
2
CFρHv

2
H ,

∆pF =
4HτW
D

, ρH = (1− β)ρL + βρG, ρHvH = G. (13)

A liquid viscosity value µ = 0.001 Pa/s can be assumed. The results of the data
processing is shown in Table 1.

2 Void fraction models

For the analytic determination of the void fraction with the 4 models, we will assume
a constant value of the liquid superficial velocity, JL = 35.6 cm/s, and a variable gas
superficial velocity, JG ranging from 0 to 20 cm/s. When necessary a constant value of
the pressure in the measuring section will be assumed, p ≈ 1.17 bar.

2.1 The homogeneous model

According to the homogeneous model, the void fraction is equal to the volumetric gas
quality, β,

RG = β =
JG

JG + JL
(14)

2.2 The Bankoff model

According to the Bankoff model, the void fraction is given by,

RG = Kβ, K = 0.71 + 0.00145p [bar] (15)

where the value of K ≈ 0, 71 in our conditions.

2.3 The Wallis model

In this two-velocitiy 1D-model, the mean velocity difference between the phases, at van-
ishing value of the void fraction, is given by,

u∞ = 1.53
(
σg(ρL − ρG)

ρ2
L

)0.25

≈ 24.95 cm/s (16)

Note that the evaluation of the void fraction with this model requires iterating on the
void fraction values since the velocity difference depends on the void fraction and that the
following equation is implicit in the void fraction values,

RG =
β

1 +
(1−RG)(wG − wL)

J

, wG − wL = u∞(1−RG)0.5 (17)

A numerical solution of (17) is therefore necessary. Is is suggested solve iteratively for
RG and to start with the value given by the Bankoff model, RG ≈ 0.7β.
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Figure 2: Void fraction predictions with the four models against the data of table 1. Code and script :
05PC01, file : 05PC-alpha.

2.4 The Zuber & Findlay model

According to this model, closures are flow regime dependent. Since the observation shows
that flow regimes are of bubbly and short slug type at the exit of the test section for the
highest values of the gas rate, we will assume bubbly flow all throughout for simplicity.
Therefore, the following applies,

C0 =
(

1, 2− 0, 2
√
ρG
ρL

)
≈ 1.193 (18)

w̃GJ = (C0 − 1)J + 1, 4
(
σg(ρL − ρG)

ρ2
L

)1/4

(1−RG)7/4

≈ 0.193J + 22.83(1−RG)7/4 [cm/s] (19)

The void fraction calculation also requires iteration. The procedure detailed in the
previous subsection may be applied,

RG =
β

C0 +
w̃GJ
J

(20)

3 Data analysis and conclusions

From figure 2, it can be seen that both determinations of the void fraction are consistent
(∆P method and NMR). However, the consistency check provided by the mean velocity
measured by NMR and the known value of the liquid superficial velocity is away from
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the two other estimates. The table 1 shows that combining the void fraction and mean
velocity determined by NMR provides a consistent value of the superficial velocity; error
compensations are occurring here obviously.

The data shows a change of trends at a void fraction values larger than 15 %.
Observation reveals bubble clustering beyond this value with large scale wake behind
them. Further downstream Taylor bubbles appear and can be considered as the onset of
the slug flow transition. Table 1 also shows a rather rapid increase of velocity fluctuations
(vp3).

Obviously the homogenous model over-predicts by 30% the void fraction as expected.
The Zuber and Findlay model seems to under-predict the data, though it could be consid-
ered as a more sophisticated model. It is however clear that both the Bankoff and Wallis
model give reasonable results. This is a typical situation in two-phase flow models. these
models are based on two radically distinct views of the phenomenon and have been fitted
on some data.

• The same data is reproduced by assuming that the deviation from the homogeneous
model is a result (i) of non-flat velocity profiles in the Bankoff’s model; (2) of a
velocity difference between the phases in the Wallis’ model.

• The Zuber & Findlay model is supposed to account for both effects and seems to be
less accurate that the two former simpler models.

To give a final judgment one should know:

• The validity range of each model, not indicated in the lecture nor in textbooks. By
validity range it is meant at least the type of flow conditions used to derive the
closure relations. In order to get this information one must refer to the original
work.

• The quality of the design of the experiment. Is the flow fully developed? Is it
properly conditioned? There is no guarantee that the test section can be fairly
compared with those which provided the models data (injection conditions).

• The uncertainty in the data. It is not known yet for NMR data and for the pressure
drop methods, it is very poor with our selected technology. A rather optimistic
estimated gives ±1, 5 % of void fraction absolute. If this type of accuracy is to be
considered with NMR, the data cannot discriminate the models.

4 Some comments on data fitting

Figure 2 show some reasonable agreement of the data with the Wallis model. It could
be considered to fit the model to our particular conditions. The fit has been performed
in the coordinates of the Wallis diagram shown in figure 3. The fitted value of u∞ = 28
cm/s is slightly larger than that given by the model (≈ 25 cm/s). The order of magnitude
is correct, though to get it, only the points with void fraction 0.1 < RG2 < 0.2 have been
considered. Points with the smaller void fraction values were considered inaccurate.

The Zuber & Findlay model seems less accurate when compared with the data.
The figure 4 shows clearly that drawing a line in this diagram with points at only one
value of the liquid superficial velocity is a challenging guess. To get the constant values
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Figure 3: Data of table 1 shown in the coordinates of the Wallis diagram: drift-flux vs void fraction. The
solid line represents the data fit with equation shown in the figure caption.

shown in the figure caption, only points with void fraction values RG > 0.1 have been
considered. The values of the correlation coefficient C0 ≈ 1.04 and of the weight-averaged
drift velocity, w̃Gj ≈ 20 cm/s agree with the model prediction. If there were no data
selection, the fitted coefficients may take arbitrary values. Again, the data set contains
data with only one value of the liquid superficial, and it is not sufficiently wide to provide
an accurate fit of the data.

The figure 5 shows the data fitting procedure in a different coordinate set: RG vs JG.
In figure 5(a) the points considered in figure 5(b) are limited to the smaller void fraction
values (RG < 0.2). Clearly the fitted values, though they provide a better fit to the data,
are rather inconsistent with the model perditions. The following remarks apply:

• Data fitting results may depend strongly on the coordinate selected coordinate sys-
tem.

• Uncertainty in the fitted parameter is a better measure of the fit quality than the
mean square residue of the fit. Some theoretical background for this is provided for
example by Press et al. (1992, Sec. 15.6).
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Figure 5: Fit of the Zuber & Findlay model on the data of table 1. (a) Considered points are identical
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Run JL TL P JG RG3 beta v3 alp. alp. JLRMN vp3 D
cm/s oC bar cm/s % % cm/s v3% M0% cm/s cm/s cm2/s

J668 35.65 20.5 1.197 .48 .4 1.3 35.56 -.2 -.3 35.65 8.57 .1112
0669 35.65 20.3 1.192 2.10 2.3 5.6 37.00 3.7 1.6 36.40 9.25 .1653
0670 35.65 20.3 1.187 3.48 4.8 8.9 37.91 6.0 4.4 36.22 10.58 .2103
0671 35.65 20.3 1.181 5.26 7.3 12.8 39.22 9.1 7.5 36.28 11.65 .2875
0672 35.65 20.3 1.175 6.84 10.5 16.1 40.49 12.0 10.1 36.39 12.19 .3078
0674 35.65 20.3 1.169 8.64 13.0 19.5 41.92 15.0 13.0 36.48 13.26 .3825
0675 35.65 20.3 1.166 10.32 15.5 22.4 43.61 18.3 15.1 37.05 14.16 .4618
0676 35.58 20.3 1.161 12.01 18.0 25.2 44.57 20.2 17.7 36.68 15.36 .5502
0677 35.51 20.8 1.158 13.65 19.3 27.8 45.32 21.6 20.3 36.12 16.32 .5459
0678 35.71 20.8 1.156 15.42 21.8 30.2 46.66 23.5 21.5 36.64 21.53 .8990
0679 35.44 20.8 1.153 17.22 22.5 32.7 45.52 22.1 23.0 35.06 30.14 1.8860
0680 35.44 20.8 1.150 18.98 21.9 34.9 46.15 23.2 23.3 35.41 33.68 1.9660

Input file :0668-0680.in and USE MG50 option, M∞ = 18875. T1 = 2.576 s

Table 1: Data processing of the series of runs 0668-0689. Use MG50 data.

JL JG HEM Bankoff Wallis Zuber & F.
cm/s cm/s - - - -
35.60 .00 .0000 .0000 .0000 .0000
35.60 2.00 .0532 .0379 .0326 .0271
35.60 4.00 .1010 .0719 .0643 .0529
35.60 6.00 .1442 .1026 .0951 .0774
35.60 8.00 .1835 .1306 .1250 .1008
35.60 10.00 .2193 .1561 .1538 .1229
35.60 12.00 .2521 .1794 .1816 .1439
35.60 14.00 .2823 .2009 .2084 .1639
35.60 16.00 .3101 .2207 .2342 .1827
35.60 18.00 .3358 .2390 .2589 .2006
35.60 20.00 .3597 .2560 .2826 .2176

Table 2: Numerical values of the predicted void fractions with the the four models.
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