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DERIVATION OF CONTINUUM MECHANICS
BALANCE EQUATIONS

1. First principles (4)
e [.ecibniz rule and Gauss theorem.

e On material and arbitrary control volumes.

2. Local instantaneous balance equations (single-phase). The closure issue (I)
e Fixed volume with an interface (discontinuity surface).
3. Local instantaneous balance for each phase and the interface (jump condi-
tions).
e Space averaging: 1D balance equations.
e Time averaging: 3D local balance equations (Reynolds style).

e Composite averaging: two-fluid model.

4. The closure issue (II)

Two-phase flow balance equations 1/39



MATHEMATICAL TOOLS

e Displacement velocity of a surface, .S

L [ OM
vs =\ ar

e Depends on the choice of parameters.

e Implicit equation: f(x,y,z,t) <0 inside V

f(xmy) 2,1+ At) — f(x())y()a Zo,t)

f(x,y,z,t+At)=0 —|—Vf(M0) CAM + ﬁAt + ...

f(x,y,z,t)=0 at
e Geometrical displacement velocity (intrinsic,

scalar):
of
L AM
VIrHT A0 At VS
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LEIBNIZ RULE

e 3D-extension of the derivation of integrals

theorem:

d 9

d de:/ _fdv+/ fvg.ndS
dt Jy @) v(t) O S(t)

e Differential geometry theorem, S arbitrary.
e n points outwardly (always).

e Use: commutes time derivative and space

integration.

e Material control volumes — arbitrary

volumes.
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GAUSS THEOREM

Divergence is the flux per unit volume:

V.Bélimi/n.BdS
S

e—0 c

Divergence theorem, Gauss-Otstrodradski

(Green) :

V.BdV:/ n.BdS

V(t) S(t)

Differential geometry theorem, S and V
arbitrary, n et V on the same side. n, points

outwards. B, arbitrary tensor.

Use: some particular volume integrals <

surface integrals.
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MATERIAL VOLUMES-ARBITRARY VOLUMES

e Let V,,(t), limited by S,,(t) be a material volume : vg .n =v.n.

d 0
< de:/ —de+/ fv.ndS
dt Jv., ) v, (1) Ot S ()

e Consider V' (¢) which coincides with V,,,(t) at t.

d o f
e de:/ Tav + fvg.ndS
dt Jv @) v(t) Ot S(t)

e Identity: for all V(¢) which coincides with V,,,(f) at time t,

d d
— fdV = — fdV + f(v—vg).ndS
dt Jyv,, @) dt Jy ) S(t)
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A SIMPLE EXAMPLE: MASS BALANCE

Principle: the mass of a material volume is constant.

d

— pdV =0
dt Jv,, @)

Use the identity with f = p,

d
— ,odV—l—/ p(v—vg).ndS =0
dt Jv) S(t)

Mass of V, m  Net mass flux leaving S, M

The time variation of the mass of V', m, equals the net incoming mass rate,
— M.

dm dm
- M — O -
dt + T dt

First principles can be formulated on material or arbitrary volumes. Both

=—-M

statements are equivalent.
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MASS BALANCE

e The time variation of the mass equals the net mass flow rate entering in
the volume V' (VV).

d

— pdV:—/p(v—VS).ndS. (1)
dt Jyv g

e Particular cases,
— For a fixed volume, vg.n = 0,

— For a material volume, vg . n=v.n
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SPECIES BALANCE

The time variation of the mass of component « equals (i) the net incoming

mass rate of a and (ii) the production in the volume V' (VV).

d

— padV:—/pa(Va—VS).ndV—l—/radV
dt Jy S 1%

Add all equations for « gives the mixture mass balance.

Y qTa=0.

Chemicals redistribution, no overall net mass production.
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LINEAR MOMENTUM BALANCE

The time variation of the linear momentum equals the sum of (i) the in-

coming momentum flux, (ii) the applied forces (VV).

i/deV:—/pv(v—vs).ndS—l—/n.TdS+/Png (2)
dt V4 S S |4

T: stress tensor, contact forces.
g: volume forces.

NB: vector equation.
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ANGULAR MOMENTUM BALANCE

e The time variation of the momentum moment equals the sum of (i) the net in-

coming flux of moment of momentum and (ii) the applied torques (VV).

d

—/erVdV:—/prxv(v—vs).ndS—l—/rx(n.T)dS—l—/rngdV

dt Jy s s v 3
3

e When torques results only of applied forces (non polar fluids). Take two get the
third.

— The stress tensor is symmetrical.
— The linear momentum balance is satisfied.

— The angular momentum balance is satisfied.
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TOTAL ENERGY BALANCE

e Equivalent to the first principle of thermodynamics: the time variation of the
total energy of a closed system equals the sum of (i) the thermal power added
and (ii) the power of external forces applied to the system.

e The time variation of the total energy (internal and mechanical) equals the
sum of (i) the incoming total energy flux, (ii) the mechanical power of the

applied forces and (iii) the thermal power given to the system.(VV).

1 1
% Vp(u+§V2) dV:—/Sp(u—l—§V2) (v—-vg).ndS

+/(n.T).vdS+/pg.vdV—/q.ndS+/q”’dV

S 1% S V
(4)
"

e ¢'"": volume heat sources (Joulean heating, radiation absorption, etc.) NOT
of thermodynamical origin, heat of reaction, phase transition of any order...

e The process is arbitrary: reversible or not.
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ENTROPY BALANCE AND SECOND PRINCIPLE

e The time variation of the entropy of a closed and isolated system is non

negative.

e The time variation of the entropy equals (i) the net inflow of entropy, (ii)
the entropy given to the system in a reversible manner, (iii) the entropy

sources (VV).

1
—/pst——/ps(v—vs).ndS—/n.jst+/q—dV+/adV,
s s v %

()

e The second principle is "only” o > 0.

e When reversible, o = 0.
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GENERALIZED BALANCE EQUATION

Balance equations have similar forms,

$ [ poav =~ [(nepv—voppas— [ nojoas+ [ v

Balance Y ju Do
Mass 1
Species o We, o r
L. momentum \% _T Ng
A. momentum | rxv  —T.RM r X pg
Total energy | u+ 3vZ q—T.v pg.v+q"”
Entropy s is _— q;/

(*)Ra R'Ilj — €ijkTk
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PRIMARY LOCAL EQUATIONS

Leibniz rule,

agﬂdvz—/n.pvwdS—/n.jwdS%—/qbin.
v Ot S S 1%

Gauss theorem, VV' C Dy,

/ [%ﬂ+v.(pv¢)+v.jw—¢¢] dV =0
v | ot

Instantaneous local primary balances,

0 .
WY — V. (pvi) V. toy
~ -~ s e — =~

Convection Diffusion Source

Balance on a fixed and infinitesimal volume, strictly equivalent to first principles.
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TOTAL FLUX FORM

Total flux form (Bird et al. , 2007), stationary flows.
Opy

PN _v L] it _|_
ot Jy T 0
Balance total flux convective flux diffusive flux
i pv Ju
Mass n = Y
Species n, — pPWa V Jo
Momentum O = pPVV —T
Total energy e = pv (u + $0v?) q-—T.v
Entropy ji = psv js

NB: Some authors may use different sign conventions for fluxes. Don’t pick up

an equation from a text without care...
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CONVECTIVE FORM

Combine with the mass balance,

dp
o —V. (pv)
Expand products in the balance equation,
0 .
8Lt¢ =—V.(pvy)) = V.jy + oy
0 .
Par w ==V (pv) = pv. Vi = V. jy + oy
Definition of the convective derivative:
Df 9f
oo TV
Dy :
Por = =V Jy + Py

Balance on a material volume (infinitesimal). Only diffusive fluxes. Practical

form to derive secondary equations.
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SUMMARY OF CONTINUUM MECHANICS EQUATIONS

For a pure fluid, on an arbitrary control volume,
e Mass balance (1)
e Linear momentum balance (2)
e Angular momentum balance (3)
e Total energy balance (4)
e Entropy inequality (5)

Local primary balance equations,

1
2

Mass balance (6)

Momentum balance (7)

4
5!

(1)—

(2)—

(3)— Stress tensor symmetry
(4)— Total energy balance (8)
(5)—

Entropy inequality (9)
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CONTINUUM MECHANICS EQUATIONS

Secondary balance equations, for a pure fluid,
e Mechanical energy balance, (10) .v momentum balance.
e Internal energy balance (11), total energy balance (8)-(10).
e Enthalpy balance (12). (11), h 2 u+p/p
e Entropy balance (13), (11), du = T'ds — pdv (Gibbs).

e Comparing to entropy inequality (9), provides js and o.
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THE CLOSURE ISSUE (1)

e In balance equations,
— Local variables, v, v, p, u, etc.
— Unknown fluxes, jo, T, q, js- NB: T = —pl+V

— Unknown sources, r,, 0.

e First principles cannot provide expressions for fluxes.
The CME are not closed.
e An extended interpretation of the second principle,
— provides entropy sources. For a pure fluid, To = q. VT +V : Vv.
— provides the thermodynamic equilibrium conditions, o = 0,

— provides constraints on possible closure to ensure return to equilibrium.

Linearity assumption, transport properties,

2
T:,LL(VV+VV)—|—(C—§/L)V.V, q:_’{VTa M C,/i>0

e Transport properties must be measured or modeled beyond CME scope.
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TWO-PHASE LOCAL BALANCE EQUATIONS

e Example: mass balance, V =V, U Vs, A = A1 U A,
fixed. Interfaces,surface of discontinuity.

4 pdV:—/pV.ndS, vV
dt Jy A

e Split contributions from V; and Vs:

d d

S pave S| pav=— .ndS— .ndS
a )y " Ta ), /Alpv . /Ava .

e For Vi(t) (not fixed), Leibniz rule:

d dp1 /
- dV = —dV .n;dA
at /. P1 /Vl o -+ At P1VA; « 11

e (Gauss theorem:

/ PV1 =11 dsS = V. (,01V1) dsS — / P1V] s ndA
Al Vl Az

e Apply the same procedure for V5, sum up all contributions,
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TWO-PHASE MASS BALANCE

Collect integral terms wrt dimension, VV/,

i/\/ (%+v'(%vk)> dV—/Ai (p1(vi — Vi) + p2(ve —v;))dA =0

k=17 "k

Local mass balance, k = 1,2, for all points in V;, (PDE),
Opk
— . =0
5 TV (PrVE)

For all points of the interface, jump condition,

pl(Vl — Vi) . H1J+\,02(V2 — Vz') « Il = 0

\ 7
TV TV

ml m2

Jump condition is the mass balance of the interface, my = pr(vy — v;) . ng.
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LOCAL BALANCE EQUATIONS

e Use the generalized local balance equation, same procedure, VV

Z/V (apkwk c(PrYEvE) + Vi (Gur) — ¢k) dv

/ Z e + N« jyr + @) dA =0

Ai g=1
e At every points of each phase,

OprYr
ot

e At every points of the interface, jump condition, balance of the interface.

+ V. (pe¥rve) + Vo (Gyr) — ok =0

2
D (et 40 jyk + ¢i) =0
k=1

® ¢;: entropy source at the interface.
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JUMP CONDITIONS

e Mass balance,

p1(vi — Vi) eng + p2(vy — v;) ang =0

m1 + mg =0
e No phase change: m; = 0,
mi =mg =0
e Assumption: no slip at the interface (¢; = 0),
(vi—v;).n; =0, (va—v;).ng=0

(Vi—v3)en; =0= v = vy
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JUMP CONDITIONS (CT'D)

e Momentum balance,
lel—l—mQVQ—nl.Tl _HQ-TQ =0
e When no viscosity, T = —pl +V, v =v' +v", v = n(v.n),
(v —vy) + (p1 — p2)m =0

e General case,

ml(Vl — V2) + (p1 — pg)nl — 111 « (Vl — VQ) =0
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JUMP CONDITIONS (CT’D)

Particular case: 1D flow, vi(x) L interface

1 my(vi—ve)unyg+(p1—p2) —m1. (Vi —V3)un; =0

1D incompressible flow, % =0=YV, =0,

mi(vi —ve).n; + (p1 —p2) =0
From the mass balance, definition: iy = pg(vi — v;) « ng,

. (i—i) — (vi—va) .1y

P1 P2

Results, pressure jump, recoil force,

P1— P2 . 2
my.
P1pP2

P1 — P2 =

p1 — P2 X p1 — po whatever m;.

Two-phase flow balance equations
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MOMENTUM BALANCE AND SURFACE TENSION

n,

e Momentum balance on a fixed volume. Forces:

:/ ONdl—|—/ nk.deS—l—/ o F i dV.
C(t) A{UA5 ViuVs

e Théoreme de Gauss Aris (1962), Delhaye (1974) :

/ oNdl = / (Vo —noVs.n)dS
C(t) A;(t)

e Vs: surface gradient, Vg .: surface divergence. Momentum balance inter-
face:

mivy +moveg — My .17 —ns . To = —Vgo+noVg.n

e Vgo: Marangoni force, noVg.n: capillary pressure, Laplace pressure jump.
noVs.n =2Hn

e H: mean curvature of the surface. Circular cylinder: 1/R, sphere: 2/R.
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EXAMPLE: 2D INTERFACES

Momentum jump at the interface,

do o
j j - T, — To+ —7——=n=0
M1V +MovVo —MNy1. 1 —No. o+ 4 T Rn
For a non viscous fluid, T = —pl + V,no phase change,
do o
—7——=n=10
ni(py — p2) + 7 pR=
Laplace relation, | : (p; — p2) = %nl N
d
Inconsistency, // : pur =0 = d(lj =0
Marangoni effect for viscous fluids, o(T), o(c),
d
—(Hl.Vl—I—HQ.VQ) T—i_d—(;- 0

Be careful with the parameter selection. Pressure is always higher in the
concavity side (balloon).
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JUMP CONDITIONS (CT'D)

Total energy balance:

1 , 1
mq (u1 + —v%) +mo (UQ + —’U%) +q1.0;+q2.n2—1n71.T1.vi —n3.To.vy =0

2 2

Enthalpy form, 3 common assumptions,
— phase change is the dominant effect,

— variation of mechanical energy can be neglected,

— the effect of pressure and viscous stress jump can be neglected (no sur-

face tension),
mih1 +msho+q1.n1 +qa.ny =0
More on the derivation, see Delhaye (1974, 2008).

Thermodynamic equilibrium condition at the interface:

2 P2

1 . 1 1 no.Vo.n
vi=vy, T1 =T, gl—ggz—m%(— )—< e

p3  p3

Two-phase flow balance equations

nl.Vl.nl

P1
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USE OF LOCAL EQUATIONS

e First principles— balance on arbitrary control volumes
— Local phase equations,

— Jump conditions at the interface (see also the Rankine-Hugoniot eqs).

e Flows with simple interface configuration
— Stability of a liquid film,
— Growth /collapse of a vapor bubble (nucleate boiling, cavitation).

e More general problems,
— Tremendously large number of interfaces, non-equilibrium.

— Large scale fluctuations, intermittency, engineers seek for mean values.
= Space averaging of local equations (area-averaged): 1D models
= Time averaging of local equations: CMFD (3D codes)

= Space and time averaging, composite averaging: two-fluid 1D model, 1D

codes, system codes.
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AREA-AVERAGED BALANCE EQUATIONS

e Area-averaging operator:

1
< fr >o= — frdA

A Ja,

e How to get a balance equation for a mean value?
Average the local balance on A;. Example, mass balance,

9
%+v.(pkvk):o

e Integrate on Ay,

%,
/ﬂdA—F/ V.(ppvi) dA=0
4, Ot Ay

e Limiting forms of the Leibniz rule and Gauss theorems,

9, 0
i dA 4+ ... 1+ = dAL ... =0
ot /., Pk + -+ 9z /4 PkWi +

Ap<pr>2 Ap<prwi>2

7

Two-phase flow balance equations 30/39



Cy
- °

MATHEMATICAL TOOLS

e Limiting form of the Leibniz rule,

0 O fr d!
— A= [ ZEdA
ot /Ak fkd /Ak ot d * /Ck; ka e Nng « N

e Limiting form of the Gauss theorem,

dl
V.BdA:g/ nz.BdA—|—/ n;.B
A, 0z Ja, Ch Ny« N

e First useful identity, B =n,

0A} / dl
— = — Nn;.n, (1)
0z Ch Ny« NgC
e Second useful identity, B = pl
0 dl
VpdA = —/ pn.dA +/ png (2)
Ay (92 Ay C Nng « N
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AREA-AVERAGED BALANCE EQUATIONS (CT'D)

e Integrate on Ag,

/%dA+ V. (prvi) dA =0
4, Ot Ay

e Leibniz rule and Gauss theorem,

0 0 . dl
—Ap < pr >2 + A < prwp >2=— [ 1y,
ot 0z Ch N« N

e [';: production rate of phase k [kg/s/m] per unit length of pipe.

: dl
'y = — My,
Cy Nng « N

e No phase change: miy =0 =1 = 0.
e Mass balance of the interface, m; +my =0=11+15y = 0.

e The area-averaged mass balance is not closed.
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AREA-AVERAGED BALANCE EQUATIONS

e Based on the general form of the local balance equations.,

%) 0 0 .
—Ap < prr >0 F A <N pp Vi >0 Al <0y gk >0 — Ak < O >0
ot 0z 0z

. : dl . dl
=— [ (ute +ng . jyr) — Dk Juk
C, Nng .« N Ch Nng « N

o 0A;, = C; UCL, () wall fraction wetted by k, C;, interface.

Cy
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MOMENTUM BALANCE

Note on the momentum balance, vector equation,

0 0
atAk: < PRV >2 o A < prwpVvE >2 _8_Ak: <n..Ty > —Ap < pp8r >2
. dl dl
:—/ (mkvk—nk.Tk) —I—/ ng . lx
C, Ny . Do o Ny . Do

Projection on n,: right dot product, wy = v . n,, stress tensor decomposition,

0 0,
atAk < PrWg >9 +—— Ak < Pk >2 ——Ak <1n,.Vig.n, >o

A < ,okwk >9 +— B

0z 0z

dl dl

—Ap < Pkg, >2= —/ (mkwk —Ng . Tg nz) —I—/ Ng.lp.N,
C; Ng .« NpC C Ny« NgC

Identity (1), assume < pi >o= pc,

dl dl 0Ay
- Pkl « 11, — —DPcC Ng .1, = P >2 ——
CLUC; Ng .« NgC CLUC; ng . Nic 0z

Other choices are possible, introduce an excess pressure, p;, pc =< pr. >o +p; - - -
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MOMENTUM BALANCE (CT’D)

Momentum balance, single-pressure, < pr >o= pc,

0 0 0
A < >0 +— A < 2 >0 + AL — < pp >o —
o7 1k Pk Wi 2+(’9z E< Prwi >2 + k5 Pk >2
: dl
C; ng .« N

0z

_|_/ nk lelnz
Ch ng .« NgC

dl

Transfers are dominant in the radial direction, quasi fully developed flows,

0 0
gAk<nz.Vk.nz >0 X %(

ow

Yt 0z

) o

Give an example of a situation where this term might not be neglected.

Closures are required: interactions at the interface and the wall (wall friction).

Two-phase flow balance equations
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TIME AVERAGED BALANCE EQUATIONS

[ 7] » . .
e Conditional time-averaging,

Sl | |
y v | : - 1 X frdt X
/- \/B 1 ’ : ff:_ fkdtsz 2L — ifk
| \:ﬁ L Jimy) Jr Xt Xk
| j 1 |+
| | | e Plain time-average,
| i [ | r ) 1
vt { t t ! 1

=172 S AL R f=r /T fdt
| T

e How to get a balance equation for a mean value? Average the local balance on [Tj].

0
/ TP 4t 4 V. (ppve)dt =0
7, Ot 7]

e Limiting forms of the Leibniz rule and the Gauss, theorem,

pkdt+'--—|—v./ ppvedt+--- =0
[Tk ]

7 \ - 7

X

~~ ~~~

Tk;p_kX TkprVE
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MATHEMATICAL TOOLS

Limiting form of the Leibniz rule (derivation of an integral wrt upper limit),

Limiting form of the Gauss theorem,

0 0 V; .11
[ ra= g [ pde- Y g
73 73] deeer) LYirmel
+1
g . Bk
V.Budt = V. B,dt + Z
[T [T] disc.€[T] |VZ ) nk‘

Time-averaged mass balance, production rate of phase k, interfacial interactions are

homogenized [kg/s/m?],

Do P

1
ot + V. (OzkkakX) = _T Z

disc.€[T]

My

v

Z—.nk|

Time-averaged balance equations, starting point of the Reynolds decomposition, T

X
Oa pr Yy,

ot

+v.(

X X X
PEVEVE >+V-(Oékzjwk: )—Oékqbk;

Two-phase flow balance equations

1

T

2.

disc.€[T]

MEYr + Nk« Jyk

‘Vi .nk|
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COMPOSITE AVERAGES: THE TWO-FLUID MODEL

e Example: mass balance, space-averaged and time averaged,

0 0 . dl
—Ap < pp >o+ —Ap < prw >2=— [ 1y,
ot 0z o ng . NpC

e Time averaged and space averaged,

0 0 1
5 A% akPE F 2+ 5, 4% kPR F 2 = —A4 T >

disc.€[T]

M

> 2

Vi« ng|

e LHS are identical, the RHS should also. Proof, identity on interaction terms,

1 1
e Local specific interfacial area, v = T Z | |
V; « 1N

disc.€[T]

e Possible closure of interaction terms: interfacial area x mean flux,

D S R

disc.€[T] |Vi | nk‘ disc.€[T] ‘Vi ] nk|
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