Projet d'écoulements diphasiques de novembre 2010

29th November 2010

Hervé Lemonnier, DTN/SE2T, CEA/Grenoble, 38054 Grenoble cedex 9, France Tel : +33 (0)
4 38 78 45 40, Fax : +33 (0) 4 38 78 50 45, E-Mail:
 herve.lemonnier@cea.fr

1 Analyse de données de l'expérience Debora

On considère l'expérience Debora qui a pour objectif l'étude des écoulements diphasiques bouillants en conduite. On s'intéresse plus particulièrement aux conditions de pression et de température régnant dans les réacteurs à eau sous pression. Toutefois, au lieu d'utiliser de l'eau on utilise un fluide organique (R12) ce qui permet de travailler à des pressions et températures moindres et à un coût plus modéré. Des analogies entre fluides ont été étudiées qui permettent de considérer que les expériences en R12 reproduisent avec un certain réalisme les expériences eau-vapeur. L'expériene que l'on va étudier ici a été l'objet d'une étude détaillée par Manon (2000).

La section d'essais est chauffée à flux constant q et permet la détermination simultanée du profil radial de taux de vide et de la température liquide en sortie de longueur chauffante. L'installation permet également de déterminer la température de paroi de la section le long de la section d'essais. La section d'essais est un tube circulaire de diamètre intérieur D = 19,2 mm qui est chauffée électriquement par effet Joule. La distance séparant l'entrée de la section de mesure est L = 3,485 m.

Le point de fonctionnement est déterminé par les quantités suivantes.

- La pression, p, que l'on considère uniforme dans la section d'essais.
- La température du liquide à l'entrée, T_{LE} , le dispositif est ainsi fait que l'écoulement à l'entrée est toujours monophasique liquide.
- La densité de flux thermique, q, supposée uniforme sur tout le tube,
- La vitesse massique, G, à l'entrée du dispositif.

1.1 Equivalence titre thermodynamique et position

La figure 1 extraite de la thèse de Manon (2000, figure I.3-2, p. 47) montre l'évolution de la température de paroi en fin de section d'essais et aussi en quelques points intermédiaires sur la section d'essais. L'expérience montre que la température de paroi, quelque soit sa localisation dans la section d'essais, n'est fonction que du titre thermodynamique, x_E , pour une pression, un débit et un flux donnés. Pour des conditions de pression, flux et débit donnés, il est donc pratiquement équivalent de se déplacer dans le tube (le long de l'abscisse z ou de changer la température d'entrée. On peut donc considérer que la figure 1 représente aussi le profil de température le long d'un tube pour les conditions de flux, débit et pression donnés dans la légende de la figure.

1.2 Interprétation des températures de paroi

Le profil de température de la figure 1 montre deux régimes distinct. Pour la première partie ($x_E < -0, 4$ environ) on peut supposer que l'écoulement est monophasique liquide en sortie du dispositif ou au point de mesure intémédiaire. Au delà d'un certain titre la température de paroi atteint une valeur approximativement constante : l'ébullition

Figure 1: Evolution de la température de paroi à différentes hauteurs dans le tube et en sortie avec les conditions d'entrée. Pression : 26,2 bar, $G = 1982 \text{ kg/m}^2/\text{s}$, $q = 73,9 \text{ kW/m}^2$.

démarre et le régime de transfert de chaleur est donc différent.

L'objet de ce projet est d'interpréter ces données. On considérera les données du tableau I.3-1 de Manon (2000, p. 46). On pourra aussi considérer les données du tableau I.3-2, relatives à des points intermédiaires de la section d'essais. Vous trouverez dans le cours et dans la thèse de Manon les modèles permettant d'interpréter cette courbe notamment,

- Les modèles de coefficient de transfert de chaleur en écoulement monophasique et
- Les critères d'apparition de l'ébullition nuclée de Frost et Dzacowic

Toutefois, vous verrez que les informations données dans la thèse manquent de précision, la section suivante indique ce que l'on trouve dans les livres sérieux. Vous tenterez d'analyser l'expérience avec les trois modèles monophasiques indiqués et vous conclurez sur les mérites respectifs de ces trois modèles.

Les tableaux 1 et 2 donnent les propriétés thermodynamiques et de transport du fréon R12. Si vous avez besoin d'autres valeurs, vous pouvez les télécharger à partir du site du NIST : http://webbook.nist.gov/chemistry/fluid/. On notera que C_P varie substantiellement entre l'entrée et la sortie du tube et également entre la paroi et le coeur de l'écoulement. On définira la température moyenne de l'écoulement comme celle correspondant à l'enthalpie moyenne calculée par le bilan d'énergie. On pourra éventuellement discuter les approximations proposées par Manon (2000).

1.3 Apparition significative de la vapeur

On essaiera de déterminer si sur les données de la figure 1 on a atteint la limite d'apparition significative de la valeur et pour quelle valeur du titre on l'atteint. On utilisera le modèle de Saha et Zuber. Il est aussi décrit dans la thèse de Manon.

T	ho	h	C_P	μ	k	Phase
$^{\mathrm{o}}\mathrm{C}$	$ m kg/m^3$	kJ/kg	$\rm kJ/kg/K$	$\mu {\rm Pa}~{\rm s}$	W/m/K	
19.000	1343.6	218.52	0.96071	207.90	0.070580	liquid
20.000	1340.2	219.49	0.96284	205.77	0.070237	liquid
21.000	1336.8	220.45	0.96499	203.66	0.069894	liquid
22.000	1333.3	221.42	0.96718	201.57	0.069552	liquid
23.000	1329.8	222.38	0.96940	199.50	0.069209	liquid
24.000	1326.3	223.36	0.97165	197.44	0.068867	liquid
25.000	1322.8	224.33	0.97394	195.41	0.068525	liquid
26.000	1319.3	225.30	0.97626	193.40	0.068183	liquid
27.000	1315.7	226.28	0.97862	191.40	0.067841	liquid
28.000	1312.1	227.26	0.98102	189.43	0.067500	liquid
29.000	1308.5	228.24	0.98346	187.47	0.067158	liquid
30.000	1304.9	229.23	0.98595	185.53	0.066816	liquid
31.000	1301.3	230.21	0.98847	183.60	0.066474	liquid
32.000	1297.6	231.20	0.99104	181.69	0.066132	liquid
33.000	1293.9	232.20	0.99366	179.80	0.065790	liquid
34.000	1290.2	233.19	0.99633	177.92	0.065448	liquid
35.000	1286.4	234.19	0.99905	176.06	0.065106	liquid
36.000	1282.7	235.19	1.0018	174.21	0.064763	liquid
37.000	1278.9	236.19	1.0046	172.38	0.064420	liquid
38.000	1275.0	237.20	1.0075	170.56	0.064077	liquid
39.000	1271.2	238.21	1.0105	168.75	0.063734	liquid
40.000	1267.3	239.22	1.0135	166.96	0.063390	liquid
41.000	1263.4	240.24	1.0165	165.18	0.063047	liquid
42.000	1259.4	241.25	1.0197	163.41	0.062702	liquid
43.000	1255.5	242.27	1.0229	161.66	0.062357	liquid
44.000	1251.4	243.30	1.0262	159.91	0.062012	liquid
45.000	1247.4	244.33	1.0296	158.18	0.061666	liquid
46.000	1243.3	245.36	1.0330	156.46	0.061320	liquid
47.000	1239.2	246.39	1.0365	154.75	0.060973	liquid
48.000	1235.1	247.43	1.0402	153.05	0.060625	liquid
49.000	1230.9	248.47	1.0439	151.36	0.060277	liquid
50.000	1226.6	249.52	1.0477	149.68	0.059928	liquid

Table 1: Evolution des propriétés thermodynamique et de transport pour le fréon 12 (R12) selon NIST, à pression constante et égale à 26,2 bar.

2 Transfert de chaleur en convection forcée monophasique

Dans beaucoup de livres et de thèses et mêmes certaines notes de cours..., il règne un certain flou sur les modèles permettant de déterminer le coefficient de transfert de chaleur en écoulement monophasique. Un des livres précis que je recommande est celui de Bejan (1993, p. 315-316). Vous pourrez, pour votre culture lire la note de Winterton (1998) qui illustre comment la citation des travaux anciens et originaux évoluent au fil du temps et des recopies multiples dans les articles et les livres, c'est particulièrement édifiant. Dans le livre de Bejan, on trouve les modèles de Colburn, Dittus Boelter et Sieder et Tate qui sont les plus souvent cités. Toutefois, il semble qu'il y ait même dans ce livre encore des conflits avec les papiers originaux notamment celui de Colburn dont la limite de validité semble erronée. La description de ces modèles par Rosenhow *et al.* (1998, table 5.11, p.

5.26) me semble plus précise.

• Modèle de Colburn, propriétés de transport et thermodynamiques à la température dite de film, moyenne entre la température de paroi et la température moyenne du fluide.

$$Nu = 0.023 \, Re^{0.8} Pr^{1/3}, \quad 0.5 \le Pr \le 3, \quad 10^4 \le Re \le 10^5$$
 (1)

• Modèle de Dittus Boelter, propriétés de transport et thermodynamiques à la température moyenne.

$$Nu = 0.024 \, Re^{0.8} Pr^{0.4}, \quad 0.7 \le Pr \le 120, \quad 2500 \le Re \le 1.24 \, 10^5$$
 (2)

• Modèle de Sieder et Tate, toutes propriétés de transport et thermodynamiques à la température moyenne sauf μ_W évalué à la température de paroi. Cette corrélation est l'une des seules recommandées lorsque la viscosité varie fortement avec la température.

$$Nu = 0.027 \, \mathrm{Re}^{0.8} \mathrm{Pr}^{1/3} \left(\frac{\mu}{\mu_W}\right) 0.14, \quad 0.7 \leqslant \mathrm{Pr} \leqslant 16700, \quad \mathrm{Re} \ge 10^4$$
(3)

References

Bejan, A. (ed). 1993. Heat transfer. John Wiley & Sons.

- Manon, E. 2000. Contribution à l'analyse et à la modélisation locale des écoulements bouillants sous-saturés dans les conditions des réacteurs à eau sous pression. Ph.D. thesis, Ecole centrale Paris, France. \Rightarrow .
- Rosenhow, W. M., Hartnet, J. P., & Cho, Y I. 1998. Handbook of heat transfer. Third edn. McGraw-Hill. \Rightarrow .
- Winterton, R. H. S. 1998. Where did the Dittus Boelter equation comes from? Int. J. Heat Mass Transfer, 41(4-5), 809–810. \Rightarrow .

T	ρ	h	C_P	μ	k	Phase
$^{\mathrm{o}}\mathrm{C}$	$ m kg/m^3$	kJ/kg	$\rm kJ/kg/K$	$\mu Pa \ s$	W/m/K	
50.000	1226.6	249.52	1.0477	149.68	0.059928	liquid
51.000	1222.4	250.57	1.0516	148.00	0.059578	liquid
52.000	1218.0	251.62	1.0557	146.34	0.059227	liquid
53.000	1213.7	252.68	1.0598	144.69	0.058875	liquid
54.000	1209.3	253.74	1.0641	143.04	0.058523	liquid
55.000	1204.8	254.81	1.0685	141.40	0.058169	liquid
56.000	1200.3	255.88	1.0731	139.77	0.057814	liquid
57.000	1195.8	256.95	1.0778	138.14	0.057458	liquid
58.000	1191.2	258.03	1.0827	136.52	0.057100	liquid
59.000	1186.5	259.12	1.0877	134.91	0.056742	liquid
60.000	1181.8	260.21	1.0929	133.30	0.056382	liquid
61.000	1177.0	261.31	1.0983	131.69	0.056020	liquid
62.000	1172.2	262.41	1.1040	130.10	0.055657	liquid
63.000	1167.3	263.51	1.1098	128.50	0.055292	liquid
64.000	1162.3	264.63	1.1159	126.91	0.054925	liquid
65.000	1157.2	265.75	1.1222	125.32	0.054556	liquid
66.000	1152.1	266.87	1.1288	123.73	0.054185	liquid
67.000	1146.9	268.00	1.1357	122.15	0.053812	liquid
68.000	1141.6	269.14	1.1430	120.56	0.053437	liquid
69.000	1136.2	270.29	1.1506	118.98	0.053060	liquid
70.000	1130.8	271.44	1.1585	117.39	0.052679	liquid
71.000	1125.2	272.61	1.1669	115.81	0.052296	liquid
72.000	1119.5	273.78	1.1758	114.22	0.051911	liquid
73.000	1113.8	274.96	1.1851	112.62	0.051522	liquid
74.000	1107.9	276.15	1.1951	111.03	0.051129	liquid
75.000	1101.8	277.35	1.2056	109.43	0.050733	liquid
76.000	1095.7	278.56	1.2169	107.82	0.050334	liquid
77.000	1089.4	279.78	1.2289	106.20	0.049930	liquid
78.000	1082.9	281.02	1.2418	104.57	0.049522	liquid
79.000	1076.3	282.27	1.2556	102.94	0.049109	liquid
80.000	1069.5	283.53	1.2706	101.28	0.048691	liquid
81.000	1062.5	284.81	1.2869	99.617	0.048268	liquid
82.000	1055.3	286.10	1.3047	97.930	0.047839	liquid
83.000	1047.8	287.42	1.3242	96.222	0.047404	liquid
84.000	1040.1	288.75	1.3458	94.489	0.046962	liquid
85.000	1032.0	290.11	1.3698	92.725	0.046513	liquid
86.000	1023.7	291.49	1.3968	90.926	0.046056	liquid
86.831	1016.4	292.67	1.4220	89.399	0.045670	liquid
86.831	172.51	378.59	1.2940	15.731	0.017662	vapor
87.000	172.06	378.81	1.2858	15.732	0.017628	vapor
88.000	169.49	380.08	1.2420	15.738	0.017444	vapor
89.000	167.10	381.30	1.2046	15.748	0.017287	vapor
90.000	164.87	382.49	1.1722	15.761	0.017152	vapor

Table 2: Evolution des propriétés thermodynamique et de transport pour le fréon 12 (R12) selon NIST, à pression constante et égale à 26,2 bar. Les propriétés encadrées par les deux barres horizontales correspondents aux conditions de saturation. La tension de surface aux consistions de saturation vaut $\sigma = 0.0017657$ N/m.